scholarly journals Animal fat and glycerol bioconversion to polyhydroxyalkanoate by produced water bacteria

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 92-102
Author(s):  
Rafeya Sohail ◽  
Nazia Jamil ◽  
Iftikhar Ali ◽  
Sajida Munir

AbstractOil reservoirs contain large amounts of hydrocarbon rich produced water, trapped in underground channels. Focus of this study was isolation of PHA producers from produced water concomitant with optimization of production using animal fat and glycerol as carbon source. Bacterial strains were identified as Bacillus subtilis (PWA), Pseudomonas aeruginosa (PWC), Bacillus tequilensis (PWF), and Bacillus safensis (PWG) based on 16S rRNA gene sequencing. Similar amounts of PHA were obtained using animal fat and glycerol in comparison to glucose. After 24 h, high PHA production on glycerol and animal fat was shown by strain PWC (5.2 g/ L, 6.9 g/ L) and strain PWF (12.4 g/ L, 14.2 g/ L) among all test strains. FTIR analysis of PHA showed 3-hydroxybutyrate units. The capability to produce PHA in the strains was corroborated by PhaC synthase gene sequencing. Focus of future studies can be the use of lipids and glycerol on industrial scale.

Fine Focus ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 171-186
Author(s):  
Olivia J. Rickman ◽  
M. Auður Sigurbjörnsdóttir ◽  
Oddur Vilhemsson

Nine xylanolytic bacterial strains were isolated from fen and heath soils in northern Iceland. They were found by 16S rRNA gene sequencing to belong to the genera Paenibacillus, Bacillus, Pseudomonas, and Stenotrophomonas. Using a simple, plate-based semiquantitative assay with azo-crosslinked xylan as the substrate, it was determined that although isolated from cold environments, most of the strains displayed greater xylanolytic activity under mesophilic conditions, with only the paenibacilli displaying markedly cold-active xylanolytic activity. Indeed, for one isolate, Paenibacillus castaneae OV2122, xylanolytic activity was only detected at 15°C and below under the conditions tested. Of the nine strains, Paenibacillus amylolyticus OV2121 displayed the greatest activity at 5°C. Glycohydrolase family-specific PCR indicated that the paenibacilli produced multiple xylanases of families 10 and 11, whereas a family 8 xylanase was detected in Pseudomonas kilonensis AL1515, and a family 11 xylanase in Stenotrophomonas rhizophila AL1610.


2010 ◽  
Vol 56 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Iftikhar Ahmed ◽  
Toru Fujiwara

Boron (B) is toxic to living cells at levels above a certain threshold. We isolated several B-tolerant bacterial strains from soil samples and studied them for possible mechanisms of B tolerance. 16S rRNA gene sequencing and comparative phylogenetic analysis demonstrated that the isolates belong to the following 6 genera: Arthrobacter , Rhodococcus , Lysinibacillus , Algoriphagus , Gracilibacillus , and Bacillus . These isolates exhibited B-tolerance levels of 80, 100, 150, 300, 450, and 450 mmol/L, respectively, whilst maintaining a significantly lower intracellular B concentration than in the medium. Statistical analysis showed a negative correlation between the protoplasmic B concentration and the degree of tolerance to a high external B concentration. The kinetic assays suggest that the high B efflux and (or) exclusion are the tolerance mechanisms against a high external B concentration in the isolated bacteria.


2018 ◽  
Author(s):  
Olivia J. Rickman ◽  
M. Auður Sigurbjörnsdóttir ◽  
Oddur Vilhelmsson

AbstractNine xylanolytic bacterial strains were isolated from fen and heath soils in northern Iceland. They were found by 16S rRNA gene sequencing to belong to the generaPaenibacillus,Bacillus,Pseudomonas, andStenotrophomonas. Using a simple, plate-based semiquantitative assay with azo-crosslinked xylan as the substrate, it was determined that although isolated from cold environments, most of the strains displayed greater xylanolytic activity under mesophilic conditions, with only the paenibacilli displaying markedly cold-active xylanolytic activity. Indeed, for one isolate,Paenibacillus castaneaeOV2122, xylanolytic activity was only detected at 15°C and below under the conditions tested. Of the nine strains,Paenibacillus amylolyticusOV2121 displayed the greatest activity at 5°C. Glycohydrolase family-specific PCR indicated that the paenibacilli produced multiple xylanases of families 10 and 11, whereas a family 8 xylanase was detected inPseudomonas kilonensisAL1515, and a family 11 xylanase inStenotrophomonas rhizophilaAL1610.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 µmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Sign in / Sign up

Export Citation Format

Share Document