stenotrophomonas rhizophila
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 2)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Tomas Rivas-Garcia ◽  
Bernardo Murillo-Amador ◽  
Juan J. Reyes-Pérez ◽  
Roberto G. Chiquito-Contreras ◽  
Pablo Preciado-Rangel ◽  
...  

The indiscriminate use of synthetic fungicides has led to negative impact to human health and to the environment. Thus, we investigated the effects of postharvest biocontrol treatment with Debaryomyces hansenii, Stenotrophomonas rhizophila, and a polysaccharide ulvan on fruit rot disease, storability, and antioxidant enzyme activity in muskmelon (Cucumis melo L. var. reticulatus). Each fruit was treated with (1) 1 × 106 cells mL−1 of D. hansenii, (2) 1 × 108 CFU mL−1 of S. rhizophila, (3) 5 g L−1 of ulvan, (4) 1 × 106 cells mL−1 of D. hansenii + 1 × 108 CFU mL−1 of S. rhizophila, (5) 1 × 108 CFU mL−1 of S. rhizophila + 5 g L−1 of ulvan, (6) 1 × 106 cells mL−1 of D. hansenii + 1 × 108 CFU mL−1 of S. rhizophila + 5 g L−1 of ulvan, (7) 1000 ppm of benomyl or sterile water (control). The fruits were air-dried for 2 h, and stored at 27 °C ± 1 °C and 85–90% relative humidity. The fruit rot disease was determined by estimating the disease incidence (%) and lesion diameter (mm), and the adhesion capacity of the biocontrol agents was observed via electron microscopy. Phytopathogen inoculation time before and after adding biocontrol agents were also recorded. Furthermore, the storability quality, weight loss (%), firmness (N), total soluble solids (%), and pH were quantified. The antioxidant enzymes including catalase, peroxidase, superoxide dismutase, and phenylalanine ammonium lyase were determined. In conclusion, the mixed treatment containing D. hansenii, S. rhizophila, and ulvan delayed fruit rot disease, preserved fruit quality, and increased antioxidant activity. The combined treatment is a promising and effective biological control method to promote the shelf life of harvested muskmelon.


2021 ◽  
Author(s):  
Shangchen Sun ◽  
Kexin Zhang ◽  
Yamiao Wu ◽  
Yonggang Wang ◽  
Jixiang Chen ◽  
...  

Abstract In this study, the Cu2+ (120 mg/L) and Cr6+(80 mg/L) removal rate of S. rhizophila JC1 reached at 79.9% and 89.3%, respectively. Scanning electron microscopy showed that Pb2+ and Zn2+ had no obvious effect on cell structure, but the cells became smaller and brighter under Cu2+ stress, and many nanoparticles formed on the cell surface under Cr6+ stress. The physiological response analyses demonstrated that moderate change of membrane permeability was necessary for adsorption. FI-IR and EDS analyses showed that exopolysaccharides (EPS) and the replacement of basic elements (ie., C, O) might be the main means of heavy metals adsorption by strain. In addition, 323 transport proteins were predicted in the genome of S. rhizophila JC1. Among them, two, six and five proteins of the cation diffusion facilitator, resistance-nodulation-division efflux and P-type ATPase families were respectively predicted. The expression of genes showed that the synergistic action of transport proteins played an important role in the process of adsorption. The comparative genomics analysis revealed that S. rhizophila JC1 has long-distance evolutionary relationships with other strains, but the efflux system of S. rhizophila JC1 contained the same types of metal transport proteins as other metal-resistant bacteria.


Author(s):  
Qin Zhang ◽  
Yan Wang ◽  
Jin Zhou

This paper describes the isolation of an algicidal strain, Stenotrophomonas rhizophila KC1, from mangrove (Kandelia candel), and its genome, which was sequenced using next-generation sequencing technology. The genome is 5.93 Mb with a G+C content of 63.17%. A total of 3,352 functional proteins were assigned according to KEGG categories. A total of 11,586 protein coding genes, 73 tRNA genes, and 17 rRNA genes were obtained. In silico genome annotation protocols identified 83 putative quorum sensing (QS) genes, and the algicidal potential of KC1 was related with the QS genes (for example LuxI-LuxR genes). Collectively, these data suggest that KC1 may be an antialgal bacterium whose behavior can be modulated by QS signaling. The annotated genome sequence of this strain may represent a valuable tool for studying algae–bacteria interactions and developing microbe-based methods for controlling harmful algae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. S. Schmidt ◽  
L. Mrnka ◽  
P. Lovecká ◽  
T. Frantík ◽  
M. Fenclová ◽  
...  

AbstractPhoma stem canker (caused by the ascomycetes Leptosphaeria maculans and Leptosphaeria biglobosa) is an important disease of oilseed rape. Its effect on endophyte communities in roots and shoots and the potential of endophytes to promote growth and control diseases of oilseed rape (OSR) was investigated. Phoma stem canker had a large effect especially on fungal but also on bacterial endophyte communities. Dominant bacterial genera were Pseudomonas, followed by Enterobacter, Serratia, Stenotrophomonas, Bacillus and Staphylococcus. Achromobacter, Pectobacter and Sphingobacterium were isolated only from diseased plants, though in very small numbers. The fungal genera Cladosporium, Botrytis and Torula were dominant in healthy plants whereas Alternaria, Fusarium and Basidiomycetes (Vishniacozyma, Holtermaniella, Bjerkandera/Thanatephorus) occurred exclusively in diseased plants. Remarkably, Leptosphaeria biglobosa could be isolated in large numbers from shoots of both healthy and diseased plants. Plant growth promoting properties (antioxidative activity, P-solubilisation, production of phytohormones and siderophores) were widespread in OSR endophytes. Although none of the tested bacterial endophytes (Achromobacter, Enterobacter, Pseudomonas, Serratia and Stenotrophomonas) promoted growth of oilseed rape under P-limiting conditions or controlled Phoma disease on oilseed rape cotyledons, they significantly reduced incidence of Sclerotinia disease. In the field, a combined inoculum consisting of Achromobacter piechaudii, two pseudomonads and Stenotrophomonas rhizophila tendencially increased OSR yield and reduced Phoma stem canker.


2020 ◽  
Vol 8 (10) ◽  
pp. 1506
Author(s):  
Peter Kusstatscher ◽  
Wisnu Adi Wicaksono ◽  
Dhivya P. Thenappan ◽  
Eveline Adam ◽  
Henry Müller ◽  
...  

The targeted application of plant growth-promoting rhizobacteria (PGPR) provides the key for a future sustainable agriculture with reduced pesticide application. PGPR interaction with the indigenous microbiota is poorly understood, but essential to develop reliable applications. Therefore, Stenotrophomonas rhizophila SPA-P69 was applied as a seed coating and in combination with a fungicide based on the active ingredients fludioxonil, metalaxyl-M, captan and ziram. The plant performances and rhizosphere compositions of treated and non-treated maize plants of two field trials were analyzed. Plant health was significantly increased by treatment; however, overall corn yield was not changed. By applying high-throughput amplicon sequencing of the 16S rRNA and the ITS genes, the bacterial and fungal changes in the rhizosphere due to different treatments were determined. Despite the fact that treatments had a significant impact on the rhizosphere microbiota (9–12%), the field site was identified as the main driver (27–37%). The soil microbiota composition from each site was significantly different, which explains the site-specific effects. In this study we were able to show the first indications how PGPR treatments increase plant health via microbiome shifts in a site-specific manner. This way, first steps towards a detailed understanding of PGPRs and developments of consistently efficient applications in diverse environments are made.


2020 ◽  
Author(s):  
Shraddha P. Pawar ◽  
Ambalal B. Chaudhari

Abstract Pyrrolnitrin (PRN) from rhizobacteria displays a key role in biocontrol of phytopathogenic fungi in rhizospheric soil. Therefore, different rhizospheric soils were investigated for the prevalence of PRN producer in minimal salt (MS) medium containing tryptophan (0.2 M NaCl; pH 8) using three successive enrichments. Of 12% isolates, only five bacterial strains had shown PRN secretion, screened with Thin Layer Chromatography (Rf 0.8) and antifungal activity (27 mm) against phytopathogen. The phenetic and 16S rRNA sequence revealed the close affiliation of isolates (KMB, M-2, M-11, TW3, and TO2) to Stenotrophomonas rhizophila (KY800458), Enterobacter spp. (KY800455), Brevibacillus parabrevis (KY800454), Serratia marcescens (KY800456) and Serratia nemtodiphila (KY800457). Purified compound from isolates was characterised using UV, IR, HPLC, LCMS and GCMS as PRN. However, BLASTn hit of prn gene sequences from both Serratia species showed 99% similarity with NADPH dependent FMN reductase component (prnF). The homology protein model of prnF was developed from translated sequence of S. marcescens TW3 with chromate reductase of Escherichia coli K-12. Docking with FMN and NADPH was performed. The study demonstrated the possible role of prnF NADPH dependent FMN reductases in prnD for supply of reduced flavin in rhizobacterial strain of Serratia spp. which may pave a way to understand PRN production.


Author(s):  
Peter Kusstatscher ◽  
Wisnu Adi Wicaksono ◽  
Dhivya P. Thenappan ◽  
Eveline Adam ◽  
Henry Müller ◽  
...  

The targeted application of plant growth promoting rhizobacteria (PGPR) provides the key for a future sustainable agriculture with reduced pesticide application. PGPR interaction with the indigenous microbiota is poorly understood but essential to develop reliable applications. Therefore, Stenotrophomonas rhizophila SPA-P69 was applied as seed coating and in combination with a fungicide based on the active ingredients fludioxonil, metalaxyl-M, captan and ziram. Plant performance and rhizosphere composition of treated and non-treated maize plants of two field trials were analyzed. Plant health was significantly increased by treatment; however overall corn yield was not changed. By applying high-throughput amplicon sequencing of the 16S rRNA and the ITS genes, the bacterial and fungal changes in the rhizosphere due to different treatments were determined. Despite treatments had a significant impact on the rhizosphere microbiota (9- 12%), the field site was identified as main driver (27- 37%). Soil microbiota composition from each site was significantly different, which explains the site-specific effects. In this study we were able to show first indications how PGPR treatments increase plant health via microbiome shifts in a site-specific manner. This way first steps towards a detailed understanding of PGPRs and developments of consistently efficient applications in diverse environments are set.


2020 ◽  
Author(s):  
Hongwei Liu ◽  
Jiayu Li ◽  
Lilia C. Cavalhais ◽  
Cassandra Percy ◽  
Jay Prakash Verma ◽  
...  

SummaryEmerging experimental framework suggests that plants under biotic stress may actively seek help from soil microbes, but empirical evidence underlying such a ‘cry for help’ strategy is limited.We used integrated microbial community profiling, pathogen and plant transcriptive gene quantification and culture-based methods to systematically investigate a three-way interaction between the wheat plant, wheat-associated microbiomes and Fusarium pseudograminearum (Fp).A clear enrichment of a dominant bacterium, Stenotrophomonas rhizophila (SR80), was observed in both the rhizosphere and root endosphere of Fp-infected wheat. SR80 reached 3.7×107 cells g-1 in the rhizosphere and accounted for up to 11.4% of the microbes in the root endosphere. Its abundance had a positive linear correlation with the pathogen load at base stems and expression of multiple defense genes in top leaves. Upon re-introduction in soils, SR80 enhanced plant growth, both the below- and above-ground, and induced strong disease resistance by priming plant defense in the aboveground plant parts, but only when the pathogen was presentTogether, the bacterium SR80 seems to have acted as an early warning system for plant defense. This work provides novel evidence for the potential protection of plants against pathogens by an enriched beneficial microbe via modulation of the plant immune system.


Sign in / Sign up

Export Citation Format

Share Document