The Marshall–Olkin Transmuted-G Family of Distributions

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed Z. Afify ◽  
Haitham M. Yousof ◽  
Morad Alizadeh ◽  
Indranil Ghosh ◽  
Samik Ray ◽  
...  

AbstractWe introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.

2018 ◽  
Vol 47 (4) ◽  
pp. 60-80 ◽  
Author(s):  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
Ahmed Z. Afify ◽  
Gauss M. Cordeiro ◽  
M. Mansoor

We introduce a new class of continuous distributions called the complementary generalized transmuted Poisson-G family, which extends the transmuted class pioneered by Shaw and Buckley (2007). We provide some special models and derive general mathematical properties including quantile function, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies and order statistics. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the new family is illustrated by means of two applications to real data sets.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G. G. Hamedani

We propose a new generator of univariate continuous distributions with two extra parameters called the transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by Gomes-Silva et al. [1]. Some mathematical properties of the new generator such as, the ordinary and incomplete moments, generating function, stress strength model, Rényi entropy, probability weighted moments and order statistics are investigated. Certain characterisations of the proposed family are estimated. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. The potentiality of the new family is illustrated by means of five applications to real data sets.  


Author(s):  
Haitham Yousof ◽  
Muhammad Mansoor ◽  
Morad Alizadeh ◽  
Ahmed Afify ◽  
Indranil Ghosh

We study a new family of distributions defined by the minimum of the Poissonrandom number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of theproposed family.


Author(s):  
Joseph Thomas Eghwerido ◽  
John David Ikwuoche ◽  
Obinna Damian Adubisi

This work proposes an inverse odd Weibull (IOW) family of distributions for a lifetime distributions. Some mathematical properties of this family of distribution were derived. Survival, hazard, quantiles, reversed hazard, cumulative, odd functions, kurtosis, skewness, order statistics and entropies of this new family of distribution were examined. The parameters of the family of distributions were obtained by maximum likelihood. The behavior of the estimators were studied through simulation. The flexibility and importance of the distribution by means of real data set applications were emphasized.


Author(s):  
Sule Ibrahim ◽  
Sani Ibrahim Doguwa ◽  
Isah Audu ◽  
Jibril Haruna Muhammad

We proposed a new family of distributions called the Topp Leone exponentiated-G family of distributions with two extra positive shape parameters, which generalizes and also extends the Topp Leone-G family of distributions. We derived some mathematical properties of the proposed family including explicit expressions for the quantile function, ordinary and incomplete moments, generating function and reliability. Some sub-models in the new family were discussed. The method of maximum likelihood was used to estimate the parameters of the sub-model. Further, the potentiality of the family was illustrated by fitting two real data sets to the mentioned sub-models.


Author(s):  
Haitham Yousof ◽  
Ahmed Z Afify ◽  
Morad Alizadeh ◽  
G. G. Hamedani ◽  
S. Jahanshahi ◽  
...  

In this work, we introduce a new class of continuous distributions called the generalized poissonfamily which extends the quadratic rank transmutation map. We provide some special models for thenew family. Some of its mathematical properties including Rényi and q-entropies, order statistics andcharacterizations are derived. The estimations of the model parameters is performed by maximumlikelihood method. The Monte Carlo simulations is used for assessing the performance of the maximumlikelihood estimators. The ‡exibility of the proposed family is illustrated by means of two applicationsto real data sets.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-23
Author(s):  
Maha A. D. Aldahlan ◽  
Mohamed G. Khalil ◽  
Ahmed Z. Afify

A new class of continuous distributions called the generalized Burr X-G family is introduced. Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the quantile and generating functions, ordinary and incomplete moments, order statistics and Rényi entropy are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.


2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Morad Alizadeh ◽  
Edwin M. M. Ortega

We study some mathematical properties of a new generator of continuous distributions with two extra parameters called the exponentiated half-logistic family. We present some special models. We investigate the shapes of the density and hazard rate function. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, probability weighted moments, Bonferroni and Lorenz curves, Shannon and Rényi entropies, and order statistics, which hold for any baseline model. We introduce two bivariate extensions of this family. We discuss the estimation of the model parameters by maximum likelihood and demonstrate the potentiality of the new family by means of two real data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2019 ◽  
Vol 15 (4) ◽  
pp. 849
Author(s):  
Hesham Reyad‎ ◽  
Mahmoud Ali Selim ◽  
Soha Othman

Based on the Nadarajah Haghighi distribution and the Topp Leone-G family in view of the T-X family, we introduce a new generator of continuous distributions with three extra parameters called the Nadarajah Haghighi Topp Leone-G family. Three sub-models of the new class are discussed. Main mathematical properties of the new family are investigated such as; quantile function, raw and incomplete moments, Bonferroni and Lorenz curves, moment and probability generating functions, stress-strength model, Shanon and Rényi entropies, order statistics and probability weighted moments. The model parameters of the new family is estimated by using the method of maximum likelihood and the observed information matrix is also obtained. We introduce two real applications to show the importance of the new family.


Sign in / Sign up

Export Citation Format

Share Document