scholarly journals A New Generalized Family of Distributions for Lifetime Data

2021 ◽  
Vol 19 (1) ◽  
pp. 2-23
Author(s):  
Maha A. D. Aldahlan ◽  
Mohamed G. Khalil ◽  
Ahmed Z. Afify

A new class of continuous distributions called the generalized Burr X-G family is introduced. Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the quantile and generating functions, ordinary and incomplete moments, order statistics and Rényi entropy are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.

Author(s):  
Haitham Yousof ◽  
Muhammad Mansoor ◽  
Morad Alizadeh ◽  
Ahmed Afify ◽  
Indranil Ghosh

We study a new family of distributions defined by the minimum of the Poissonrandom number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of theproposed family.


2018 ◽  
Vol 47 (4) ◽  
pp. 60-80 ◽  
Author(s):  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
Ahmed Z. Afify ◽  
Gauss M. Cordeiro ◽  
M. Mansoor

We introduce a new class of continuous distributions called the complementary generalized transmuted Poisson-G family, which extends the transmuted class pioneered by Shaw and Buckley (2007). We provide some special models and derive general mathematical properties including quantile function, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies and order statistics. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the new family is illustrated by means of two applications to real data sets.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G. G. Hamedani

We propose a new generator of univariate continuous distributions with two extra parameters called the transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by Gomes-Silva et al. [1]. Some mathematical properties of the new generator such as, the ordinary and incomplete moments, generating function, stress strength model, Rényi entropy, probability weighted moments and order statistics are investigated. Certain characterisations of the proposed family are estimated. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. The potentiality of the new family is illustrated by means of five applications to real data sets.  


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed Z. Afify ◽  
Haitham M. Yousof ◽  
Morad Alizadeh ◽  
Indranil Ghosh ◽  
Samik Ray ◽  
...  

AbstractWe introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.


Author(s):  
Haitham Yousof ◽  
Ahmed Z Afify ◽  
Morad Alizadeh ◽  
G. G. Hamedani ◽  
S. Jahanshahi ◽  
...  

In this work, we introduce a new class of continuous distributions called the generalized poissonfamily which extends the quadratic rank transmutation map. We provide some special models for thenew family. Some of its mathematical properties including Rényi and q-entropies, order statistics andcharacterizations are derived. The estimations of the model parameters is performed by maximumlikelihood method. The Monte Carlo simulations is used for assessing the performance of the maximumlikelihood estimators. The ‡exibility of the proposed family is illustrated by means of two applicationsto real data sets.


Author(s):  
Faton Merovci ◽  
Haitham Yousof ◽  
G. G Hamedani

We study a new family of distributions defined by the minimum of the Poisson random number of independent identically distributed random variables having a Topp Leone-G distribution (see Rezaei et al., (2016)). Some mathematicalproperties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Some special models of the newfamily are discussed. An application is carried out on  real data set applications sets to show the potentiality of the proposed family.


2019 ◽  
Vol 15 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Hesham Mohamed Reyad ◽  
Morad Alizadeh ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G G Hamedani

In this paper, we propose a new class of continuous distributions called the exponentiated generalized Topp Leone-G family that extends the Topp Leone-G family introduced by Al-Shomrani et al. (2016). We derive explicit expressions for certain mathematical properties of the new family such as; ordinary and incomplete moments, generating functions, reliability analysis, Lorenz and Bonferroni curves, Rényi entropy, stress strength model, moment of residual and reversed residual life, order statistics and extreme values. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the flexibility of the new family.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1089 ◽  
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

In this article, we introduce a new general family of distributions derived to the truncated inverted Kumaraswamy distribution (on the unit interval), called the truncated inverted Kumaraswamy generated family. Among its qualities, it is characterized with tractable functions, has the ability to enhance the flexibility of a given distribution, and demonstrates nice statistical properties, including competitive fits for various kinds of data. A particular focus is given on a special member of the family defined with the exponential distribution as baseline, offering a new three-parameter lifetime distribution. This new distribution has the advantage of having a hazard rate function allowing monotonically increasing, decreasing, and upside-down bathtub shapes. In full generality, important properties of the new family are determined, with an emphasis on the entropy (Rényi and Shannon entropy). The estimation of the model parameters is established by the maximum likelihood method. A numerical simulation study illustrates the nice performance of the obtained estimates. Two practical data sets are then analyzed. We thus prove the potential of the new model in terms of fitting, with favorable results in comparison to other modern parametric models of the literature.


Sign in / Sign up

Export Citation Format

Share Document