scholarly journals F. Riesz Theorem

2017 ◽  
Vol 25 (3) ◽  
pp. 179-184
Author(s):  
Keiko Narita ◽  
Kazuhisa Nakasho ◽  
Yasunari Shidama

Summary In this article, we formalize in the Mizar system [1, 4] the F. Riesz theorem. In the first section, we defined Mizar functor ClstoCmp, compact topological spaces as closed interval subset of real numbers. Then using the former definition and referring to the article [10] and the article [5], we defined the normed spaces of continuous functions on closed interval subset of real numbers, and defined the normed spaces of bounded functions on closed interval subset of real numbers. We also proved some related properties. In Sec.2, we proved some lemmas for the proof of F. Riesz theorem. In Sec.3, we proved F. Riesz theorem, about the dual space of the space of continuous functions on closed interval subset of real numbers, finally. We applied Hahn-Banach theorem (36) in [7], to the proof of the last theorem. For the description of theorems of this section, we also referred to the article [8] and the article [6]. These formalizations are based on [2], [3], [9], and [11].

2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


1997 ◽  
Vol 55 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Reinhard Wolf

Let E be a Banach space. The averaging interval AI(E) is defined as the set of positive real numbers α, with the following property: For each n ∈ ℕ and for all (not necessarily distinct) x1, x2, … xn ∈ E with ∥x1∥ = ∥x2∥ = … = ∥xn∥ = 1, there is an x ∈ E, ∥x∥ = 1, such thatIt follows immediately, that AI(E) is a (perhaps empty) interval included in the closed interval [1,2]. For example in this paper it is shown that AI(E) = {α} for some 1 < α < 2, if E has finite dimension. Furthermore a complete discussion of AI(C(X)) is given, where C(X) denotes the Banach space of real valued continuous functions on a compact Hausdorff space X. Also a Banach space E is found, such that AI(E) = [1,2].


1978 ◽  
Vol 21 (2) ◽  
pp. 165-172
Author(s):  
Shankar Hegde

AbstrctV. S. Varadarajan has classified the bounded linear functional on the algebra C(X) of bounded continuous functions on a topological space X, according to the properties of their smoothness and related this classification to the corresponding natural classification of finitely additive regular measures on the zero sets of X. In this paper, some of these results are extended to the linear functionals on an arbitrary uniformly closed algebra A of bounded functions on a set X.


1996 ◽  
Vol 39 (3) ◽  
pp. 316-329
Author(s):  
K. D. Magill

AbstractLet λ be a map from the additive Euclidean n-group Rn into the space R of real numbers and define a multiplication * on Rn by v * w = (λ(w))v. Then (Rn, + , *) is a topological nearring if and only if λ is continuous and λ(av) = aλ(v) for every v € Rn and every a in the range of λ. For any such map λ and any topological space X we denote by Nλ(X, Rn) the nearring of all continuous functions from X into (Rn, +, *) where the operations are pointwise. The ideals of Nλ(X, Rn) are investigated in some detail for certain λ and the results obtained are used to prove that two compact Hausdorff spaces X and Y are homeomorphic if and only if the nearrings Nλ(X, Rn) and Nλ(Y, Rn) are isomorphic.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


Author(s):  
Ch. Konstadilaki-Savvapoulou ◽  
D. Janković

A strong form of continuity of functions between topological spaces is introduced and studied. It is shown that in many known results, especially closed graph theorems, functions under consideration areR-continuous. Several results in the literature concerning strong continuity properties are generalized and/or improved.


Order ◽  
2021 ◽  
Author(s):  
Péter Vrana

AbstractGiven a commutative semiring with a compatible preorder satisfying a version of the Archimedean property, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is an essentially unique compact Hausdorff space together with a map from the semiring to the ring of continuous functions. Strassen’s theorem characterizes an asymptotic relaxation of the preorder that asymptotically compares large powers of the elements up to a subexponential factor as the pointwise partial order of the corresponding functions, realizing the asymptotic spectrum as the space of monotone semiring homomorphisms to the nonnegative real numbers. Such preordered semirings have found applications in complexity theory and information theory. We prove a generalization of this theorem to preordered semirings that satisfy a weaker polynomial growth condition. This weaker hypothesis does not ensure in itself that nonnegative real-valued monotone homomorphisms characterize the (appropriate modification of the) asymptotic preorder. We find a sufficient condition as well as an equivalent condition for this to hold. Under these conditions the asymptotic spectrum is a locally compact Hausdorff space satisfying a similar universal property as in Strassen’s work.


2021 ◽  
pp. 1-14
Author(s):  
R.M. CAUSEY

Abstract Galego and Samuel showed that if K, L are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_\pi C(L)$ is c0-saturated if and only if it is subprojective if and only if K and L are both scattered. We remove the hypothesis of metrizability from their result and extend it from the case of the twofold projective tensor product to the general n-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces K1, …, K n , $\widehat{\otimes}_{\pi, i=1}^n C(K_i)$ is c0-saturated if and only if it is subprojective if and only if each K i is scattered.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Metin Akdag ◽  
Alkan Ozkan

We introduce the concepts softβ-interior and softβ-closure of a soft set in soft topological spaces. We also study softβ-continuous functions and discuss their relations with soft continuous and other weaker forms of soft continuous functions.


Sign in / Sign up

Export Citation Format

Share Document