scholarly journals Integrated Subsurface Temperature Modeling beneath Mt. Lawu and Mt. Muriah in The Northeast Java Basin, Indonesia

2019 ◽  
Vol 11 (1) ◽  
pp. 341-351
Author(s):  
Bagus Endar B. Nurhandoko ◽  
Rizal Kurniadi ◽  
Susilowati ◽  
Kaswandhi Triyoso ◽  
Sri Widowati ◽  
...  

Abstract The subsurface temperature has many impacts on geological phenomena such as hydrocarbon generation, geothermal energy, mineralization, and geological hazards. The Northeast Java Basin has various interesting phenomena, such as many oil fields, active faults, mud eruptions, and some active and dormant volcanoes. We measured temperature data from tens of wells along a 130 km survey line with an average spacing of 5 km. We also measured the thermal conductivity of rocks of various lithologies along the survey line to provide geothermal heat flow data. We propose integrated modeling for profiling the subsurface temperature beneath the survey line from Mt. Lawu to Mt. Muriah in the Northeast Java Basin. The modeling of subsurface temperature integrates various input data such as a thermal conductivity model, surface temperature, gradient temperature, a geological model, and geothermal heat flow. The thermal conductivity model considers the subsurface geological model. The temperature modeling uses the finite difference of Fourier’s law, with an input subsurface thermal conductivity model, geothermal heat flow, and surface temperature. The subsurface temperature profile along with survey line shows some interesting anomalies which correlate with either subsurface volcanic activity or the impact of fault activity.

2015 ◽  
Vol 17 (41) ◽  
pp. 27889-27893 ◽  
Author(s):  
Xin Liang

Recasting the Callaway and von Baeyer model for calculating the thermal conductivity of oxide materials containing defects of various dimensions, illustrated with the ZnO–In2O3 system.


2018 ◽  
Vol 6 (12) ◽  
pp. 3004-3015 ◽  
Author(s):  
Yongqiang Guo ◽  
Genjiu Xu ◽  
Xutong Yang ◽  
Kunpeng Ruan ◽  
Tengbo Ma ◽  
...  

Significantly improved thermal conductivities and a more accurate thermal conductivity model were achieved.


Sign in / Sign up

Export Citation Format

Share Document