scholarly journals Testing feldspar luminescence dating of young archaeological heated materials using potshards from Pella (Tell Tabqat Fahl) in the Jordan valley

2017 ◽  
Vol 44 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Sahar Al Khasawneh ◽  
Andrew S. Murray ◽  
Stephen Bourke ◽  
Dominik Bonatz

Abstract Recent developments in the use of more stable feldspar signals in the luminescence dating of sediments offer the possibility of obtaining accurate feldspar luminescence ages for ceramic artefacts; this is especially interesting in locations which do not provide suitable quartz extracts. Here we examine the application of the stable infrared stimulated luminescence signal measured at elevated temperature (in this case 290°C; pIRIR290) after stimulation at about room temperature to Levantine pottery samples. A total of 52 potsherds were collected from three superimposed iron-age units at Pella (Jordan); based on 14C dating, typology and seriation these units were deposited between 700 and 900 BCE. Sand-sized quartz extracts were unsuitable, and there was insufficient sand-sized feldspar, and so polymineral fine grains were chosen for dating. Various tests for reliability were undertaken (dose recovery, dependence of De on first stimulation temperature etc.). The pIRIR signals are weak, and 14 potsherds were rejected on this basis. Of the remainder, 3 were confidently identified as outliers. Based on those sherds for which IR signals were sufficiently intense, we use the ratio of the IR50 to pIRIR290 signals to argue that these outliers do not arise from incomplete resetting during manufacture. The ages from each layer are considerably over dispersed (typically by ∼25%) but average ages for each unit are consistent with each other and with the expected age range. The average OSL age for the site is 2840 ± 220 years (n = 35), with the overall uncertainty dominated by systematic uncertainties; this average is consistent with the range of 14C ages from 970–1270 BCE reported from across the destruction horizon. We conclude that the pIRIR290 signal is delivering accurate ages, but that the variability in age from shard to shard is much greater than would be expected from known sources of uncertainty. This demonstrates the need for site ages to be based on multiple samples; individual shard ages are unlikely to be sufficiently accurate.

2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Julia Roskosch ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen

Abstract Luminescence dating was applied on coarse-grained monomineralic potassium-rich feld-spar and polymineralic fine-grained minerals of five samples derived from fluvial deposits of the Riv-er Weser in northwestern Germany. We used a pulsed infrared stimulated luminescence (IRSL) single aliquot regenerative (SAR) dose protocol with an IR stimulation at 50°C for 400 s (50 μs on-time and 200 μs off-time). In order to obtain a stable luminescence signal, only off-time IRSL signal was rec-orded. Performance tests gave solid results. Anomalous fading was intended to be reduced by using the pulsed IRSL signal measured at 50°C (IR50), but fading correction was in most cases necessary due to moderate fading rates. Fading uncorrected and corrected pulsed IR50 ages revealed two major fluvial aggradation phases during the Late Pleistocene, namely during marine isotope stage (MIS) 5d (100 ± 5 ka) and from late MIS 5b to MIS 4 (77 ± 6 ka to 68 ± 5 ka). The obtained luminescence ages are consistent with previous 230Th/U dating results from underlying interglacial deposits of the same pit, which are correlated with MIS 7c to early MIS 6.


2020 ◽  
Author(s):  
Galina Faershtein ◽  
Naomi Porat ◽  
Ari Matmon

Abstract. Optically stimulated luminescence (OSL) on quartz is an established technique for dating late Pleistocene to late Holocene sediments. Unfortunately, this method is often limited to up to 100 ka (thousands of years). Recent developments in new extended range luminescence techniques show great potential for dating older sediments of middle and even early Pleistocene age. These methods include thermally transferred OSL (TT-OSL) and violet stimulated luminescence (VSL) for quartz and post infrared-infrared stimulated luminescence (pIRIR) for feldspar. Here we investigate the luminescence behavior of the TT-OSL, VSL and pIRIR signals of quartz and feldspar minerals of aeolian sediments of Nilotic origin from the eastern Mediterranean. We sampled a 15 m thick sequence (Kerem Shalom) comprising sandy calcic paleosols, which is part of a sand sheet that covers an extensive region in south-western Israel. Dose recovery and bleaching experiments under natural conditions indicated that the pIRIR250 signal is the most suitable for dating the Nilotic feldspar. Luminescence intensity profiles revealed natural saturation of the three signals at the same depth of ~6 m, indicating that ages of samples below that depth are minimum ages. Using TT-OSL and pIRIR250, a minimum age of 715 ka, for the base of the section was obtained, suggesting aeolian sand accumulation along the eastern Mediterranean coastal plain already since the early Pleistocene. Our results indicate that both TT-OSL and pIRIR250 can accurately date middle Pleistocene aeolian sediments of Nilotic origin and that minimum ages can be provided for early Pleistocene samples.


Geochronology ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Galina Faershtein ◽  
Naomi Porat ◽  
Ari Matmon

Abstract. Optically stimulated luminescence (OSL) of quartz is an established technique for dating late Pleistocene to late Holocene sediments. Unfortunately, this method is often limited to up to 100 ka (thousands of years). Recent developments in new extended-range luminescence techniques show great potential for dating older sediments of middle and even early Pleistocene age. These methods include thermally transferred OSL (TT-OSL) and violet stimulated luminescence (VSL) for quartz and post-infrared infrared stimulated luminescence (pIRIR) for feldspar. Here we investigate the luminescence behaviour of the TT-OSL, VSL, and pIRIR signals of quartz and feldspar minerals of aeolian sediments of Nilotic origin from the eastern Mediterranean. We sampled a 15 m thick sequence (Kerem Shalom) comprising sandy calcic palaeosols, which is part of a sand sheet that covers an extensive region in south-western Israel. Dose recovery and bleaching experiments under natural conditions indicated that the pIRIR250 signal is the most suitable for dating the Nilotic feldspar. Luminescence intensity profiles revealed natural saturation of the three signals at the same depth of ∼6 m, indicating that ages of samples below that depth are minimum ages. Using TT-OSL and pIRIR250, a minimum age of 715 ka for the base of the section was obtained, suggesting aeolian sand accumulation along the eastern Mediterranean coastal plain already since the early Pleistocene. Our results indicate that both TT-OSL and pIRIR250 can accurately date aeolian sediments of Nilotic origin up to 200 ka and that minimum ages can be provided for older samples up to the early Pleistocene.


1996 ◽  
Vol 20 (2) ◽  
pp. 127-145 ◽  
Author(s):  
G.A.T. Duller

Luminescence dating is an important technique for providing chronological control for Quaternary sedimentary sequences. In this article recent developments in luminescence dating are described, together with the implications of these developments for the application of the various types of luminescence dating techniques now available. In particular, the development of optically stimulated luminescence (OSL) techniques has had a profound effect upon the field, enabling younger materials to be dated, increasing the diversity of depositional environments that can be dated, and allowing the development of novel methods of age determination. The most exciting developments are the ability to obtain luminescence ages for samples in the age range from 100 to 1000 years, and the ability to date individual sand grains from a sample.


Radiocarbon ◽  
2019 ◽  
Vol 62 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Sahar al Khasawneh ◽  
Andrew Murray ◽  
Zeidan Kafafi ◽  
Lucas Petit

ABSTRACTIn this study, we investigate quartz-based luminescence optical dating of Iron Age deposits at the archaeological site of Tell Damiyah in the Jordan valley. Ten samples, taken from different occupation layers from two different excavation areas, proved to have good luminescence characteristics (fast-component dominated, dose recovery ratio 1.032 ± 0.010, n=24). The optical ages are completely consistent with both available 14C ages and ages based on stylistic elements; it appears that this material was fully reset at deposition, although it is recognised that the agreement with age control is somewhat dependent on the assumed field water content of the samples. Further comparison with different OSL signals from feldspar, or investigations based on dose distributions from individual grains would be desirable to independently confirm the resetting of this material. It is concluded that the sediments of Tell Damiyah are very suitable for luminescence dating. Despite the relatively large associated age uncertainties of between 5 and 10%, OSL at tell sites has the potential to provide ages for material very difficult to date by conventional methods, and to identify reworked mixtures of older artifacts in a younger depositional setting.


2011 ◽  
Vol 38 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Guo-Qiang Li ◽  
Hui Zhao ◽  
Fa-Hu Chen

Abstract The luminescence dating of the K-feldspar fraction is an alternative way for samples that cannot yield reasonable equivalent dose (De) from quartz fraction with very weak luminescence signal. For testing the reliability of the infrared stimulated luminescence (IRSL) dating of K-feldspar, luminescence dating was applied to quartz and K-feldspar fractions respectively for several Holocene samples in this study. K-feldspar apparent ages using routine single aliquot regenerative-dose (SAR) protocol, K-feldspar ages using g value correction method and ages from isochron dating method were compared with quartz ages. It is found that the g value correction method cannot give reliable ages due to the large errors induced during measurements. The isochron dating method is effective to the sample with problematically external dose rate. However, isochron dating may introduce a relatively greater error during grain sizes — De curve fitting, therefore this method could obtain low-resolution ages for Holocene samples. Even K-feldspar apparent age from routine SAR protocol is relatively younger by about 10% than the quartz age, it still could establish reasonable chronological framework for Holocene samples.


2009 ◽  
Vol 21 (5) ◽  
pp. 483-499 ◽  
Author(s):  
Glenn W. Berger ◽  
Sara Ante ◽  
Eugene W. Domack

AbstractSediment trap arrays were deployed in Brialmont Cove and Andvord Bay, eastern Gerlache Strait, from December 2001–March 2003. The recovered sediments (representing instantaneous deposition from the viewpoint of luminescence dating) encompass all the annual and local glaciomarine depositional processes. Magnetic susceptibility profiles were used to infer seasonality in the trap cores, and thus to select subsamples for luminescence measurements. Multi-aliquot infrared stimulated luminescence (IRSL) apparent ages were used to assess the effectiveness of ‘clock zeroing’ (by daylight) of light sensitive luminescence within fine silt polymineral samples from each trap depth. IRSL apparent ages for 24 samples indicate that the largest age-depth differences occur with the autumn season samples at both trap sites, suggesting a previously unrecognized and regional (within the Gerlache Strait) change in depositional controls in the autumn compared to other seasons. The apparent ages also indicate some differences between the fjords, and a more complex oceanographic regime at Andvord Bay than at Brialmont Cove. Dry-mass sediment fluxes varied from 0.4 to 0.7 g cm-2 yr-1, with the largest flux at Brialmont Cove (∼0.7 g cm-2 yr-1) occurring in the bottom trap, whereas at Andvord Bay, the largest flux (∼0.6 g cm-2 yr-1) occurred in the middle trap (∼45 m above seafloor).


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Petra Jamšek Rupnik ◽  
Lucilla Benedetti ◽  
Frank Preusser ◽  
Miloš Bavec ◽  
Marko Vrabec

<p>We investigated two prominent, <strong><sup>~</sup></strong>E-W trending scarps in Quaternary sediments, located close to the town of Vodice in the Ljubljana Basin (central Slovenia). By using detailed geomorphological analysis of the scarps, field surveying, and structural observations of deformed Quaternary sediments, we conclude that the scarps are the surface expression of a N-dipping thrust fault that has been active during the Quaternary. From Optically Stimulated Luminescence and Infrared Stimulated Luminescence dating of deformed Quaternary sediments we estimate a slip rate of 0.1 to 0.3 mm a<sup>-1 </sup>in the last 133 ka. Using the published empirical fault-scaling relationships, we estimate that an earthquake of magnitude 5.9 to 6.5 may be expected on the Vodice thrust fault. The fault may, therefore, present a major seismic hazard for the densely populated and urbanised region of central Slovenia.</p>


1984 ◽  
Vol 25 (4) ◽  
pp. 369-393 ◽  
Author(s):  
Peter Robertshaw

Obsidian hydration dating has been successfully applied to East African archaeological sites. Chemical sourcing of obsidian artefacts has documented long-distance movement of obsidian from the Central Rift valley. A date in the ninth or eighth century b.c. has been obtained for iron objects in the Er Renk District of the Southern Sudan. Tentative culture-historical sequences are available from excavations around the Sudd and in the Lake Besaka region of Ethiopia. Archaeological research has begun in the interior of Somalia. In northern Kenya, claims that Namoratunga II is an archaeo-astronomical site have been challenged. Excavations at Mumba-Höhle and Nasera have shed new light on the transition from the Middle to Later Stone Age in northern Tanzania perhaps 20,000 to 30,000 years ago. Knowledge of the Elmenteitan Tradition has been considerably advanced by excavations in south-western Kenya. Iron-smelting furnaces with finger-decorated bricks have been discovered in south-eastern Kenya, though not yet dated. New dates falling in the last few centuries have caused first millennium a.d. dates obtained previously for Engaruka to be rejected. Excavations at several sites on the East African coast indicate that the beginnings of coastal occupation from the Lamu archipelago to Mozambique fall in the ninth century a.d. In Malawi the Shire Highlands seem to have been settled around the tenth century a.d. Investigations of large smelting-furnaces in central Malawi indicate that they were used as concentrators of poor-quality iron ore. Excavations in rock-shelters on the southern edge of the Copperbelt have produced a culture-historical sequence spanning the last 18,000 years. The western stream of the Early Iron Age was established in the Upper Zambezi valley by about the mid fifth century a.d.


Sign in / Sign up

Export Citation Format

Share Document