Efficiency Enhancement in Hybrid P3HT/Silicon Nanocrystal Solar Cells

Green ◽  
2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Sabrina Niesar ◽  
Wolfgang Fabian ◽  
Nils Petermann ◽  
Daniel Herrmann ◽  
Eberhard Riedle ◽  
...  

AbstractHybrid organic-inorganic solar cells from poly(3-hexylthiophene) (P3HT) and freestanding silicon nanocrystals (Si-ncs) combine the advantages of silicon-based photovoltaics with the cost-efficient solution processing technique. At present, the microwave-plasma synthesis of Si-ncs that allows for a future upscaling to industrial demands is at the expense of the Si-nc surface quality and the number of charge-trapping defects. Here, we present an enhancement of the solar cell performance by identifying the major factors which are limiting the device efficiency. With the help of low-cost post-growth treatments of the Si-ncs and the optimization of various device parameters, P3HT:Si-ncs bulk heterojunction solar cells with an efficiency up to 1.1% are achieved. In particular, etching of the Si-ncs with hydrofluoric acid to remove the surface oxide shells and surface defects has a strong impact on the solar cell performance. An intermediate Si weight ratio of around 60% is found to lead to the highest current densities. For Si-ncs with very small diameters, an additional enhancement of the open circuit voltage was observed. Moreover, we show that the structural order of P3HT has a strong influence on the efficiency, which can be explained by an improved charge carrier separation at the P3HT/Si-ncs interface in combination with an enhanced charge transport in the P3HT phase.

2001 ◽  
Vol 664 ◽  
Author(s):  
Christian Gemmer ◽  
Markus B. Schubert

ABSTRACTWe numerically simulate performance data of hydrogenated amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS) based solar cells for various illumination conditions. For ease of comparison, we model typical single junctions with the very same software. The study allows us to evaluate the cell feasibility in different hybrid electronic systems like smart cards, wrist watches, transponder systems, and mobile sensors. At an illumination intensity of 1 sun, the optical bandgap of the absorber material and the series resistances determine the spectral sensitivity of the solar cell to particular illumination spectra. For intensities of 10-2 suns and so-called D65 spectrum, which represents daylight under cloudy skies, the efficiency of a-Si:H solar cells nearly equates the CIGS cell performance although the AM 1.5 efficiency of the CIGS diode exceeds the one of our a-Si:H cell by more than a factorof two. Infrared-weighted black body radiation leads to superior performance of the CIGS type, whereas for ultraviolet-weighted illumination the a-Si:H cell shows better performance. For intensities below 10-4 suns theexternal shunt resistance dominates the current-voltage characteristics of both cell types, resulting in poor performance independent of the incident spectrum. We complete our study by simulating the solar-powered charging process of a gold capacitor, which serves us as a model for the energy storage within a hybrid electronic system. The charging behavior under various realistic illumination conditions shows particular cellcharacteristics: high open circuit voltages qualify a-Si:H solar cells for electronic systems that require increased voltages and CIGS cells are suited for applications with higher current need.


2001 ◽  
Vol 668 ◽  
Author(s):  
Bolko von Roedern

ABSTRACTBuffer layers are commonly used in the optimization of thin-film solar cells. For CuInSe2-and CdTe-based solar cells, multilayer transparent conductors (TCOs, e.g., ZnO or SnO2) are generally used in conjunction with a CdS heterojunction layer. Optimum cell performance is usually found when the TCO layer in contact with the CdS is very resistive or almost insulating. In addition to affecting the open-circuit voltage of a cell, it is commonly reported that buffer layers affect stress-induced degradation and transient phenomena in CdTe- and CuInSe2-based solar cells. In amorphous silicon solar cells, light-induced degradation has a recoverable and a nonrecoverable component too, and the details of the mechanism may depend on the p-type contact layer. Because of the similarity of transients and degradation in dissimilar material systems, it is suggested that degradation and recovery are driven by carriers rather than by diffusing atomic species. The question that must be addressed is why, not how, species diffuse and atomic configurations relax differently in the presence of excess carriers. In this paper, I suggest that the operating conditions of a cell can change the carrier transport properties. Often, excess carriers may enhance the conductance in localized regions (“filaments”) and buffer layers; limiting current flow into such filaments may therefore control the rate and amount of degradation (or recovery).


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


2020 ◽  
Vol 2 (1) ◽  
pp. 286-295 ◽  
Author(s):  
M. Kamruzzaman

ZnO nanorod (NR) based inorganic quantum dot sensitized solar cells have gained tremendous attention for use in next generation solar cells.


RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38344-38350
Author(s):  
Kai Wang ◽  
Sheng Dong ◽  
Xudong Chen ◽  
Ping Zhou ◽  
Kai Zhang ◽  
...  

Ternary all-polymer solar cells are fabricated using an N2200 acceptor and two donor polymers (PF2 and PM2) with complementary absorption.


2017 ◽  
Vol 1 (6) ◽  
pp. 1059-1072 ◽  
Author(s):  
N. Prachumrak ◽  
T. Sudyoadsuk ◽  
A. Thangthong ◽  
P. Nalaoh ◽  
S. Jungsuttiwong ◽  
...  

Three new D–π–A dyes containing different numbers of triphenylamine donor substitutions on a π-linker were synthesized for dye-sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document