scholarly journals Synthesis, characterization and computational studies of 2-cyano-6-methoxybenzothiazole as a firefly-luciferin precursor

2018 ◽  
Vol 24 (5) ◽  
pp. 255-258
Author(s):  
Ghasem Shahmoradi ◽  
Saeid Amani

Abstract A novel approach to the synthesis of 2-cyano-6-methoxybenzothiazole via the Cu-catalyzed cyanation of 2-iodo-6-methoxybenzothiazole was developed. K4[Fe(CN)6] was used as a source of cyanide, and a Cu/N,N,N′,N′-tetramethylethylenediamine (TMEDA) system was utilized as a catalyst. This approach is scalable and can be practiced with operational benign. The most stable conformation of 2-cyano-6-methoxybenzothiazole was delineated using the density functional theory (DFT)/B3LYP method with 6-311++G(d, p) basis set.

2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2019 ◽  
Vol 32 (2) ◽  
pp. 401-407
Author(s):  
M. Dinesh Kumar ◽  
P. Rajesh ◽  
R. Priya Dharsini ◽  
M. Ezhil Inban

The quantum chemical calculations of organic compounds viz. (E)-1-(2,6-bis(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenyl-hydrazine (3ECl), (E)-1-(2,6-bis(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl) and (E)-1-(2,6-bis(4-chloro-phenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) have been performed by density functional theory (DFT) using B3LYP method with 6-311G (d,p) basis set. The electronic properties such as Frontier orbital and band gap energies have been calculated using DFT. Global reactivity descriptor has been computed to predict chemical stability and reactivity of the molecule. The chemical reactivity sites of compounds were predicted by mapping molecular electrostatic potential (MEP) surface over optimized geometries and comparing these with MEP map generated over crystal structures. The charge distribution of molecules predict by using Mulliken atomic charges. The non-linear optical property was predicted and interpreted the dipole moment (μ), polarizability (α) and hyperpolarizability (β) by using density functional theory.


2007 ◽  
Vol 5 (1) ◽  
pp. 201-220 ◽  
Author(s):  
Khaled Bahgat ◽  
Abdel Ragheb

AbstractThe geometry, frequency and intensity of the vibrational bands of 8-hydroxyquinoline and its 5,7-dichloro, 5,7-dibromo, 5,7-diiodo and 5,7-dinitro derivatives were obtained by the density functional theory (DFT) calculations with Becke3-Lee-Parr (B3LYP) functional and 6-31G* basis set. The effects of chloride, bromide, iodide and nitro substituent on the vibrational frequencies of 8-hydroxyquinoline have been investigated. The assignments have been proposed with aid of the results of normal coordinate analysis. The observed and calculated spectra are found to be in good agreement.


2021 ◽  
Vol 43 (1) ◽  
pp. 25-25
Author(s):  
Said Abdelqadar Said Said Abdelqadar Said ◽  
Omar A Shareef and Abdulkhalik S Alkazzaz Omar A Shareef and Abdulkhalik S Alkazzaz

The transformation of 2and#39;-hydroxychalcones to their corresponding flavanones was studied theoretically by the use of the density functional theory (DFT) with B3-LYP/ 6-311G basis set to get important information about the role of both of electronic and structural properties in this process. The obtained energies were found to be in agreement with our previous results that obtained from HPLC studies. The estimated hardness, polarizability, and electrophilicity profiles were found to obey the maximum hardness principle (MHP), minimum polarizability principle (MPP), and the minimum electrophilicity principle (MEP) respectively. Flavanone ring closure was found to be the rate-determining step.


2018 ◽  
Vol 174 ◽  
pp. 06003
Author(s):  
Yunus Kaya ◽  
Yalçin Kalkan ◽  
Rob Veenhof

In this work, a reaction mechanism of formation of noble gas (Ng) cluster ions has been theoretically investigated in detail. The kinetic studies of formation of Xe+Xe cluster in Xe, Ar+Ar cluster ions in Ar, and Ne+Ne cluster ions in Ne have been made as theoretically. The optimized structures in the ground state were calculated using the density functional theory (DFT) by the B3LYP method combined with the Stuttgart/Dresden effective core potential basis set (SDD). In addition, we calculated the rate constants of all cluster formations. The results are 1.15 × 10−31, 3.58 × 10−31, 0.23 × 10−31cm6/s, respectively for Neon, Argon, Xenon cluster ions.


2018 ◽  
Vol 174 ◽  
pp. 06002
Author(s):  
Yunus Kaya ◽  
Yalçin Kalkan ◽  
Rob Veenhof

We have studied how water modifies the surface of graphene and in particular how the surface conductivity of graphene is affected. According to the literature, two types of interactions should be distinguished: physical, where a water molecule remains intact and is located at some distance from the mesh, and chemical, where a water molecule is imbricated in the graphene bond structure. We have developed theoretical models for both types of interactions using the density functional theory (DFT) with the B3LYP hybrid functional combined with the 6-31G(d) basis set. Our calculations show that the surface conductivity of graphene is reduced in the presence of water.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550019 ◽  
Author(s):  
Lai-Cai Li ◽  
Wei Wang ◽  
Dan Peng ◽  
Rui Pan ◽  
An-Min Tian

The catalytic coupling reaction mechanism for the transformation from p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (4,4′-DMAB) on silver cluster was studied by the density functional theory. All the reactants, intermediates, transition states and products were optimized with B3LYP method at 6-311+G (d, p) basis set (the LanL2DZ basis set was used for Ag atom). Transition states and intermediates have been confirmed by the corresponding vibration analysis and intrinsic reactions coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. Consistent with the conclusions reported in the literature, the core of obtaining the production of azobenzene according to the coupling reaction of PATP absorbed on Ag 5 clusters is the elimination of two H atoms. Meanwhile, we find that the effect of illumination in that reaction matters a lot. We also found in PATP molecular that the synergistic catalytic effect of S end absorbed on the catalyzer draws dramatically evident under no illumination conditions, while it draws less obvious under light. According to the paper's conclusion, PATP absorbed on the surface of Ag 5 tends to generate azobenzene easily.


Sign in / Sign up

Export Citation Format

Share Document