Studies on the Trapping and Detrapping Transition States of Atomic Hydrogen in Octasilsesquioxane Using the Density Functional Theory B3LYP Method

2000 ◽  
Vol 104 (46) ◽  
pp. 10868-10872 ◽  
Author(s):  
Michiko Mattori ◽  
Koichi Mogi ◽  
Yoshiko Sakai ◽  
Toshiyuki Isobe
2009 ◽  
Vol 2009 ◽  
pp. 1-5
Author(s):  
Qing-An Qiao ◽  
Xiao-Min Sun ◽  
Jie Jing ◽  
Xin Chen ◽  
Hua-Yang Wang ◽  
...  

The acetylation mechanisms of several selected typical substrates from experiments, including arylamines and arylhydrazines, are investigated with the density functional theory in this paper. The results indicate that all the transition states are characterized by a four-membered ring structure, and hydralazine (HDZ) is the most potent substrate. The bioactivity for all the compounds is increased in a sequence ofPABA≈4-AS<4-MA<5-AS≈INH<HDZ. The conjunction effect and the delocalization of the lone pairs of N atom play a key role in the reaction. All the results are consistent with the experimental data.


2015 ◽  
Vol 14 (03) ◽  
pp. 1550019 ◽  
Author(s):  
Lai-Cai Li ◽  
Wei Wang ◽  
Dan Peng ◽  
Rui Pan ◽  
An-Min Tian

The catalytic coupling reaction mechanism for the transformation from p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (4,4′-DMAB) on silver cluster was studied by the density functional theory. All the reactants, intermediates, transition states and products were optimized with B3LYP method at 6-311+G (d, p) basis set (the LanL2DZ basis set was used for Ag atom). Transition states and intermediates have been confirmed by the corresponding vibration analysis and intrinsic reactions coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. Consistent with the conclusions reported in the literature, the core of obtaining the production of azobenzene according to the coupling reaction of PATP absorbed on Ag 5 clusters is the elimination of two H atoms. Meanwhile, we find that the effect of illumination in that reaction matters a lot. We also found in PATP molecular that the synergistic catalytic effect of S end absorbed on the catalyzer draws dramatically evident under no illumination conditions, while it draws less obvious under light. According to the paper's conclusion, PATP absorbed on the surface of Ag 5 tends to generate azobenzene easily.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 808 ◽  
Author(s):  
Zhou ◽  
Zhu ◽  
Kang

The mechanisms of the single-atom X/g-C3N4(X = Au1, Pd1, and Ru1) catalysts for the acetylene hydrochlorination reaction were systematically investigated using the density functional theory (DFT) B3LYP method. The density functional dispersion correction obtained by the DFT-D3 method was taken into account. During the reaction, C2H2 and HCl were well activated and the analysis of the adsorption energy demonstrated the adsorption performance of C2H2 is better than that of HCl. The catalytic mechanisms of the three catalysts consist of one intermediate and two transition states. Moreover, our results showed that the three single-atom catalysts improve the catalytic activity of the reaction to different degrees. The calculated energy barrier declines in the order of Pd1/g-C3N4 > Ru1/g-C3N4 > Au1/g-C3N4, and the energy barrier for the Au1/g-C3N4 catalyst was only 13.66 kcal/mol, proving that single-atom Au1/g-C3N4 may be a potential catalyst for hydrochlorination of acetylene to vinyl chloride.


2018 ◽  
Vol 24 (5) ◽  
pp. 255-258
Author(s):  
Ghasem Shahmoradi ◽  
Saeid Amani

Abstract A novel approach to the synthesis of 2-cyano-6-methoxybenzothiazole via the Cu-catalyzed cyanation of 2-iodo-6-methoxybenzothiazole was developed. K4[Fe(CN)6] was used as a source of cyanide, and a Cu/N,N,N′,N′-tetramethylethylenediamine (TMEDA) system was utilized as a catalyst. This approach is scalable and can be practiced with operational benign. The most stable conformation of 2-cyano-6-methoxybenzothiazole was delineated using the density functional theory (DFT)/B3LYP method with 6-311++G(d, p) basis set.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2021 ◽  
Author(s):  
Takashi Kurogi ◽  
Keiichi Irifune ◽  
Takahiro Enoki ◽  
Kazuhiko Takai

Reduction of CCl4 by CrCl2 in THF afforded a trinuclear chromium(III) carbyne [CrCl(thf)2)]3(μ3-CCl)(μ-Cl)3. The chlorocarbyne complex reacted with aldehydes to afford chloroallylic alcohols and terminal alkynes. The density functional theory...


Sign in / Sign up

Export Citation Format

Share Document