scholarly journals Local Wave Energy Dissipation and Morphological Beach Characteristics along a Northernmost Segment of the Polish Coast

2018 ◽  
Vol 65 (2) ◽  
pp. 91-108
Author(s):  
Grzegorz Różyński

AbstractThis paper analyses cross-shore bathymetric profiles between Władysławowo (km 125 of the Polish coastal chainage) and Lake Sarbsko (km 174) done in 2005 and 2011. Spaced every 500 m, they cover beach topography from dune/cliff crests to a seabed depth of about 15 m. They were decomposed by signal processing techniques to extract the monotonic component of beach topography and to perform a straightforward assessment of wave energy dissipation rates. Three characteristic dissipation patterns were identified: one associated with large nearshore bars and 2–3 zones of wave breaking; a second, to which the equilibrium beach profile concept can be applied; and a third, characterized by mixed behaviour. An attempt was then made to interpret these types of wave energy dissipation in terms of local coastal morphological features and the underlying sedimentary characteristics.

Author(s):  
Paolo Sammarco ◽  
Leopoldo Franco ◽  
Giorgio Bellotti ◽  
Claudia Cecioni ◽  
Stefano DeFinis

An innovative caisson breakwater geometry (patent pending) named "ARPEC" (Anti Reflective PErmeable Caisson) includes openings at all external and internal walls and at lateral (cross) ones, yet in a staggered pattern, to provide a labyrinthian hydraulic communication between the open sea and the internal waters. The complex sinuous water-flow within the consecutive permeable chambers thus favors wave energy dissipation as well as port water flushing and quality, with very low reflection and transmission coefficients. 2D lab model tests demonstrate the system effectiveness.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/PaUsinYO-Zo


Author(s):  
Ryan J. Lowe ◽  
James L. Falter ◽  
Jeffrey R. Koseff ◽  
Stephen G. Monismith ◽  
Marlin J. Atkinson

2018 ◽  
Vol 48 (12) ◽  
pp. 2937-2948 ◽  
Author(s):  
David W. Wang ◽  
Hemantha W. Wijesekera

AbstractIt has been recognized that modulated wave groups trigger wave breaking and generate energy dissipation events on the ocean surface. Quantitative examination of wave-breaking events and associated turbulent kinetic energy (TKE) dissipation rates within a modulated wave group in the open ocean is not a trivial task. To address this challenging topic, a set of laboratory experiments was carried out in an outdoor facility, the Oil and Hazardous Material Simulated Environment Test Tank (203 m long, 20 m wide, 3.5 m deep). TKE dissipation rates at multiple depths were estimated directly while moving the sensor platform at a speed of about 0.53 m s−1 toward incoming wave groups generated by the wave maker. The largest TKE dissipation rates and significant whitecaps were found at or near the center of wave groups where steepening waves approached the geometric limit of waves. The TKE dissipation rate was O(10−2) W kg−1 during wave breaking, which is two to three orders of magnitude larger than before and after wave breaking. The enhanced TKE dissipation rate was limited to a layer of half the wave height in depth. Observations indicate that the impact of wave breaking was not significant at depths deeper than one wave height from the surface. The TKE dissipation rate of breaking waves within wave groups can be parameterized by local wave phase speed with a proportionality breaking strength coefficient dependent on local steepness. The characterization of energy dissipation in wave groups from local wave properties will enable a better determination of near-surface TKE dissipation of breaking waves.


Sign in / Sign up

Export Citation Format

Share Document