CrataBL, a lectin and Factor Xa inhibitor, plays a role in blood coagulation and impairs thrombus formation

2014 ◽  
Vol 395 (9) ◽  
pp. 1027-1035 ◽  
Author(s):  
Bruno R. Salu ◽  
Rodrigo S. Ferreira ◽  
Marlon V. Brito ◽  
Tatiana F. Ottaiano ◽  
José Walber M.C. Cruz ◽  
...  

Abstract Arterial thrombosis is an important complication of diabetes and cancer, being an important target for therapeutic intervention. Crataeva tapia bark lectin (CrataBL) has been previously shown to have hypoglycemiant effect and also to induce cancer cell apoptosis. It also showed inhibitory activity against Factor Xa (Kiapp=8.6 μm). In the present study, we evaluated the anti-thrombotic properties of CrataBL in arterial thrombosis model. CrataBL prolongs the activated partial thromboplastin time on human and mouse plasma, and it impairs the heparin-induced potentiation of antithrombin III and heparin-induced platelet activation in the presence of low-dose ADP. It is likely that the dense track of positive charge on CrataBL surface competes with the heparin ability to bind to antithrombin III and to stimulate platelets. In the photochemically induced thrombosis model in mice, in the groups treated with 1.25, 5.0, or 10 mg/kg CrataBL, prior to the thrombus induction, the time of total artery occlusion was prolonged by 33.38%, 65%, and 66.11%, respectively, relative to the time of the control group. In contrast to heparin, the bleeding time in CrataBL-treated mice was no longer than in the control. In conclusion, CrataBL was effective in blocking coagulation and arterial thrombus formation, without increasing bleeding time.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3155-3155 ◽  
Author(s):  
Minori Saitoh ◽  
Seiji Kaku ◽  
Toshiyuki Funatsu ◽  
Hiroyuki Koshio ◽  
Tsukasa Ishihara ◽  
...  

Abstract YM150, an oral, direct factor Xa inhibitor, is currently being evaluated in Phase II studies as prophylaxis for venous thromboembolism in patients undergoing orthopedic surgery. In the present study, we compared the antithrombotic effect of YM150 with the effects of antithrombin-dependent indirect factor Xa inhibitors, enoxaparin and fondaparinux, and a direct thrombin inhibitor, ximelagatran, in ferric chloride (FeCl3)-induced venous and arterial thrombosis models in rats. We also evaluated the bleeding time in a rat tail transection model. Prior to any experimentation, male Sprague-Dawley rats, which had been fasting for at least 12 h, were anesthetized with urethane (1 g/kg, i.p.) or sodium pentobarbital (50 mg/kg, i.p.). YM150 and ximelagatran were administered intra-duodenally, and both enoxaparin and fondaparinux were given subcutaneously, 30 min prior to induction of thrombus or tail transection. All animals were kept warm with a heating pad during the experiments. Venous and arterial thromboses were produced, respectively, by the 5 min application of 8% FeCl3 soaked filter paper to the external surface of the inferior vena cava and 35% FeCl3 soaked filter paper to the abdominal aorta. The venous thrombosis model was supplemented by using a silk thread venous stenosis. To measure bleeding time, the tail was transected 5 mm from its tip. Blood was carefully blotted each 30 sec with a filter paper. Once a blood stain was observed, we defined bleeding as blood flow sustained over 30 sec. Bleeding time was defined as the sum of the bleeding periods during the 60 min observation in each animal. Administration of intra-duodenal YM150 significantly inhibited both venous and arterial thrombus formation at doses of 10 mg/kg or greater, and 3 mg/kg or greater, respectively. This indicated that YM150 promoted an antithrombotic effect at similar dose ranges for venous and arterial thromboses. In contrast, YM150 did not prolong the bleeding time at doses up to 30 mg/kg. Venous thrombus formation was inhibited by subcutaneous enoxaparin at doses of 100 IU/kg or greater and fondaparinux at doses of 0.03 mg/kg or greater. Arterial thrombus formation was inhibited by subcutaneous administration of 1000 IU/kg enoxaparin and 3 mg/kg fondaparinux. The results indicated that 10–100 times higher doses of these antithrombotics were needed to inhibit arterial thrombosis. Furthermore, enoxaparin at doses of 300 IU/kg or greater and fondaparinux at doses of 1 mg/kg or greater, significantly prolonged the bleeding time, suggesting that these two medications may be associated with increased risk of hemorrhage at concentrations used to prevent arterial thrombosis. At doses of 1 mg/kg or greater, intra-duodenal ximelagatran inhibited both venous and arterial thrombus formation. The dose-response curve for ximelagatran tended to be steeper than that for other anticoagulants tested. Antithrombotic doses of ximelagatran (1 mg/kg or greater), produced similar prolongations of bleeding time as those seen with administration of enoxaparin and fondaparinux. In conclusion, YM150, an oral direct factor Xa inhibitor, shows promise as an antithrombotic drug with potentially wider safety margins than current antithrombin-dependent factor Xa inhibitors and a thrombin inhibitor.


1998 ◽  
Vol 79 (02) ◽  
pp. 410-416 ◽  
Author(s):  
Kazuo Sato ◽  
Yumiko Sakai ◽  
Fukushi Hirayama ◽  
Hiroyuki Koshio ◽  
Yuta Taniuchi ◽  
...  

SummaryWe examined the antithrombotic activity of a novel synthetic inhibitor of factor Xa, YM-60828, in an electrically-induced carotid artery thrombosis model in rats. In the first experiment, the antithrombotic activity of YM-60828 after i.v. infusion was compared with those of heparin, darteparin and argatroban. Test drug was administered by i.v. infusion from 30 min before electrical stimulation to the end of the experiment. YM-60828 at 1 mg/kg/h significantly improved patency status, prolonged the time to occlusive thrombus formation and duration of patency. Heparin at 300 U/kg/h also improved these parameters, but were accompanied by a marked increase in systemic coagulation time. In the second experiment, the antithrombotic activity of YM-60828 after oral administration was compared with those of ticlopidine, cilostazol, aspirin, beraprost, ethyl icosapentate and warfarin. Test drug was orally administered to fasted rats 60 min before electrical stimulation. YM-60828 at 30 mg/kg p.o., but not ticlopidine, cilostazol, aspirin, beraprost, ethyl icosapentate or warfarin, significantly reduced the incidence of occlusion and improved carotid arterial patency. These results suggest that YM-60828 may be a promising antithrombotic agent for the treatment and prevention of arterial thrombosis which can be given by oral as well as intravenous administration.


2012 ◽  
Vol 107 (02) ◽  
pp. 253-259 ◽  
Author(s):  
Toshio Fukuda ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Toshiro Shibano ◽  
Yoshiyuki Morishima

SummaryEdoxaban, an oral, direct factor Xa inhibitor, has a similar or low incidence of bleeding events compared with other anticoagulants in clinical trials. Therefore, agents to reverse the anticoagulant effects of edoxaban could be desirable in emergency situations. In this study, the reversal effects of haemostatic agents were determined on prothrombin time (PT) prolongation in vitro and bleeding time prolongation in vivo by edoxaban. PT using human plasma was measured in the presence of edoxaban at therapeutic and excess concentrations with the haemostatic agents, prothrombin complex concentrate (PPSB-HT), activated prothrombin complex concentrate (Feiba), and recombinant factor VIIa (rFVIIa). In rats, rFVIIa and Feiba was given during intensive anticoagulation with edoxaban. The haemostatic effect was evaluated in a model of planta template bleeding and a potential prothrombotic effect was evaluated in a venous thrombosis model. PPSB-HT, Feiba, and rFVIIa concentration-dependently shortened PT prolonged by edoxaban. Among these, rFVIIa and Feiba showed potent activities in reversing the PT prolongation by edoxaban. rFVIIa (1 and 3 mg/kg, i.v.) and Feiba (100 U/kg, i.v.) significantly reversed edoxaban (1 mg/kg/h)-induced prolongation of bleeding time in rats. In a rat venous thrombosis model, no potentiation of thrombus formation was observed when the highest dose (3 mg/kg) of rFVIIa was added to edoxaban (0.3 and 1 mg/kg/h) compared with the control. The present study indicated that rFVIIa, Feiba, and PPSB-HT have the potential to be reversal agents for edoxaban.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1851-1851 ◽  
Author(s):  
Taketoshi Furugohri ◽  
Yuko Honda ◽  
Chikako Matsumoto ◽  
Koji Isobe ◽  
Nobutoshi Sugiyama ◽  
...  

Abstract DU-176b is a novel potent, orally active and selective direct inhibitor of factor Xa (FXa). Direct FXa inhibitors have been reported to exert little effect on bleeding time at antithrombotic doses in animal studies. The aim of the present study was to compare the antithrombotic and hemorrhagic effects of DU-176b with unfractionated heparin (UFH), low molecular weight heparin (LMWH; dalteparin) and warfarin in rat models of thrombosis and hemorrhage. Rats were treated with DU-176b, UFH and LMWH by continuous intravenous infusion for 2 – 2.5 h, and with warfarin orally once daily for 4 days before thrombosis or hemorrhage. Thrombosis was induced by the insertion of a platinum wire into the inferior vena cava and left for 60 min. Tail template bleeding time was measured after an incision on the tail. DU-176b dose-dependently inhibited thrombus formation in the venous thrombosis model. The dose required for 50% inhibition (ED50) was 0.076 mg/kg/h. In contrast, the dose of DU-176b to double template bleeding time (BT2) was 0.75 mg/kg/h, indicating 10-fold dissociation of the doses of antithrombotic and hemorrhagic effects. UFH, LMWH and warfarin also prevented thrombus formation (ED50 = 56 U/kg/h, 66 U/kg/h and 0.16 mg/kg/day, respectively), but prolonged bleeding time at slightly higher doses (BT2 = 73 U/kg/h, 135 U/kg/h and 0.21 mg/kg/day, respectively) than the effective doses. The dissociation of the doses for these compounds was only 1.3, 2.0 and 1.3-fold, respectively. Moreover, the slope of dose-antithrombotic response curve of DU-176b was significantly slighter than those of UFH, LMWH and warfarin, indicating that the therapeutic dose range of DU-176b would be wider than those of the other anticoagulants. These results suggest that direct and selective inhibition of FXa by DU-176b is preferable for the treatment of thrombotic diseases in the aspect of lack of compromising primary hemostasis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3318-3318
Author(s):  
Yoshiyuki Iwatsuki ◽  
Chinatsu Sakata ◽  
Yumiko Moritani

Abstract Abstract 3318 Background: YM150, an oral direct factor Xa inhibitor, is currently in clinical development for the prevention of venous thromboembolism in patients undergoing orthopedic surgery, prevention of stroke in patients with atrial fibrillation, and prevention of ischemic events after recent acute coronary syndrome (ACS). The antiplatelet agents aspirin or clopidogrel will likely be co-prescribed with YM150 in ACS. Here, we report the effects of YM150 in combination with aspirin or clopidogrel on thrombus formation, bleeding, platelet aggregation, and coagulation in rats. Methods: The antithrombotic effect was estimated in a rat arteriovenous shunt model. The shunt was formed by attaching a polyethylene tube containing a silk thread to the carotid artery and the contralateral carotid vein. Blood was allowed to circulate in this shunt for 15 min, and then the silk thread was withdrawn from the tube to assess the thrombus weight. YM150, aspirin, or clopidogrel was orally administered 0.5, 1, or 2 h before shunt formation, respectively. At the same time as shunt formation, an incision was made at the sole of the left foot using a template bleeding device (Surgicutt®) to measure bleeding time. To avoid interference with the thrombosis model, blood samples to assess platelet aggregation and prothrombin time were obtained from separate animals at the same time point as shunt formation in the thrombus study. Platelet aggregation was induced using 10 μg/mL of collagen and 5 μM of adenosine 5`-diphosphate (ADP) to assess the effects of aspirin and clopidogrel, respectively. Results: YM150 alone inhibited thrombus formation, with significance at 10 mg/kg and more (P < 0.05). Respective thrombus weights in the control, 3, 10, and 30 mg/kg groups of YM150 were 4.8, 3.6, 2.4, and 2.0 mg. Aspirin alone inhibited thrombus formation, with significance at 100 mg/kg and more (P < 0.01). Respective thrombus weights in the control, 30, 100, and 300 mg/kg group of aspirin were 6.2, 4.2, 2.8, and 1.5 mg. Clopidogrel alone inhibited thrombus formation, with significance at 1 mg/kg and more (P < 0.01). Respective thrombus weights in the control, 0.3, 1, and 3 mg/kg group of clopidogrel were 4.8, 3.6, 2.9, and 1.3 mg. When administered concomitantly with 100 mg/kg of aspirin, YM150 (3, 10, 30 mg/kg) further inhibited thrombogenesis, with significance at 30 mg/kg of YM150 (P < 0.05) and thrombus weights of 2.4, 1.5, and 1.3 mg, respectively. When administered concomitantly with 1 mg/kg of clopidogrel, YM150 (3, 10, 30 mg/kg) further inhibited thrombogenesis, with significance at 30 mg/kg of YM150 (P < 0.05) and thrombus weights of 3.0, 2.0, and 1.5 mg, respectively. Collagen-induced platelet aggregation was reduced to 16.7% of the control level by 100 mg/kg of aspirin, and ADP-induced platelet aggregation was reduced to 74.4% of the control level by 1 mg/kg of clopidogrel. These effects were not changed in the presence of YM150. Prothrombin time and bleeding time were not prolonged by any of the agents alone, and further, these parameters were not affected by combined use of YM150 with either aspirin or clopidogrel. Conclusions: The thrombosis study suggests that both the platelet aggregation and coagulation cascade participate in thrombus formation in this model since both antiplatelet agents and the anticoagulant YM150 were effective. Thus, the thrombosis induced in this model can be considered similar to arterial thrombosis in humans where both platelets and fibrin are involved. Taken together, YM150 is a promising antithrombotic agent that augments the effects of antiplatelet agents against arterial thrombosis without increasing bleeding risk. Disclosures: Iwatsuki: Astellas Phama Inc.: Employment. Sakata:Astellas Phama Inc.: Employment. Moritani:Astellas Phama Inc.: Employment.


2012 ◽  
Vol 108 (11) ◽  
pp. 896-902 ◽  
Author(s):  
Atsushi Yamashita ◽  
Seiji Kaku ◽  
Yoshiyuki Iwatsuki ◽  
Yujiro Asada ◽  
Toshiyuki Funatsu

SummaryWe evaluated the relationship between antithrombotic effects and pharmacodynamic (PD) marker changes produced by the novel factor (F)Xa inhibitors darexaban (YM150) and rivaroxaban in a rabbit model of plaque disruption-induced arterial thrombosis. Animals were subjected to catheter-induced endothelial denudation via the femoral artery followed by a two-week high-cholesterol diet. Plaque disruption was induced by balloon angioplasty, and then stasis was achieved by ligation at the distal side of the injured segment. Darexaban and rivaroxaban were administered orally 1 hour (h) before and 9 h after plaque disruption, and their antithrombotic effects were evaluated 24 h after the initiation of ligation. Prothrombin time (PT), activated partial thromboplastin time (APTT), and plasma FXa activity were measured using blood samples collected before and 1 h after administration. Darexaban and rivaroxaban significantly reduced thrombus formation. The thrombus weight obtained in the 30 mg/kg darexaban group was comparable to that in the 1 mg/kg rivaroxaban group (2.17 ± 0.63 and 3.23 ± 1.64 mg, respectively, vs. 8.01 ± 1.08 mg in the control group). Plasma FXa activity correlated with the antithrombotic effects of darexaban and rivaroxaban, while PT only correlated with those of darexaban. Our findings suggest that the degree of plasma FXa inhibition may be useful for predicting antithrombotic effects of darexaban and rivaroxaban in arterial thrombosis. PT may also be useful in evaluating antithrombotic effects of darexaban in particular.


1968 ◽  
Vol 19 (01/02) ◽  
pp. 242-247 ◽  
Author(s):  
K. E Chan

SummaryThe effect of Malayan pit viper (Ancistrodon rhodostoma) venom on the fate of experimental arterial thrombosis was studied in rats. A suitable daily dose of venom (500 μg) was used to induce hypofibrinogenaemia in the treated rats for the greater part of each of three consecutive post-operative days.The treated animals showed a statistically significant overall reduction in the incidence of both red thrombus formation and thrombotic arterial occlusion when compared to a control group. This antithrombotic effect of the venom could be observed in the 7-day period following the cessation of the treatment.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Christoph E Hagemeyer ◽  
Steffen U Eisenhardt ◽  
Nicole Bassler ◽  
Patrick Stoll ◽  
Meike Schwarz ◽  
...  

Background: We generated phage-display-derived anti-GPIIb/IIIa single-chain antibodies (e.g. scFv SCE5) that specifically bind to the activated GPIIb/IIIa only and thus specifically block activated platelets only. ScFv SCE5 demonstrates strong antithrombotic potency, comparable to the conformation-unspecific blockers tirofiban and eptifibatide. In contrast bleeding times were not prolonged with scFv SCE5. Here we now use the possibility to add effector molecules using molecular biology methods. The highly potent anticoagulant TAP (tick anticoagulant peptide), which is a direct factor Xa (fXa) inhibitor, was used as an effector molecule. Methods and Results: We genetically fused the activation-specific scFv with TAP, expressed the constructs in E.coli and purified the 39 kDa protein via its Histag binding to Nickel beads. Specific binding of the fusion molecules MA2/SCE5-TAP and strong inhibition of fibrinogen binding was proven in flow cytometry; anti-fXa activity was demonstrated in chromogenic assays. In vivo anticoagulative efficiency was determined by Doppler-flow in a ferric chloride-induced carotid artery thrombosis model in mice. Prolongation in occlusion time with SCE5-TAP was significantly stronger compared to SCE5 alone, recombinant TAP, non-binding mut-scFv-TAP as well as the clinical used drugs enoxaparine and eptifibatide. In contrast to the other anticoagulants tested, bleeding time was not prolonged by SCE5-TAP. Flow experiments studying platelet adhesion on collagen revealed a possible mechanism for the unique finding of a fully normal bleeding time: LIBS exposure on adhering platelets and as such the anticoagulative targeting potency of SCE5-TAP was delayed until considerable layers of platelets were deposited. Conclusions: The combination of activation-specific GPIIb/IIIa blockade and fXa inhibition in one clot-targeted molecule further improves in-vivo antithrombotic efficiency without causing any bleeding time prolongation. The delay of the observed targeting effect may allow a sealing of injuries with platelet layers but may be in time for the prevention of occlusive platelet aggregates. The described blockers represent a new type of highly selective drugs that warrant further clinical development.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Tomohiro Kawano ◽  
Munehisa Shimamura ◽  
Hironori Nakagami ◽  
Hiroshi Koriyama ◽  
Tsutomu Sasaki ◽  
...  

Background and purpose: Nonadherence of antithrombotic medicine is one of major risk factors for recurrent strokes. Immunotherapy, such as antithrombotic vaccination, is expected to solve such a problem due to its long-lasting effects. Here, we focused on platelet-derived S100A9, which has directly regulate thrombosis without influence on hemostasis, and examined the antithrombotic effects of newly developed S100A9 vaccine in mice. Methods: S100A9 vaccine was designed to select the short peptide as an antigen of S100A9 conjugated to keyhole limpet hemocyanin (KLH). Male C57BL/6J mice were immunized with S100A9 vaccine three times at 2 weeks interval. Middle cerebral arteries (MCA) was exposed to topical application of 20% ferric chloride. The time to occlude the MCA was examined measuring cerebral blood flow with a laser doppler flowmeter. Bleeding time was assessed by cutting the tail arteries. The thrombus formation was also assessed using the laminar flow chamber. The influences of vaccine for T-cell activation were assed using an IgG subclass ELISA and an enzyme-linked immunosorbent spot (ELISPOT) assay. Results: S100A9 vaccine successfully produced antibodies specific for S100A9 in serum in a dose-dependent manner. After the third immunization, the time to thrombus formation in MCA was significantly prolonged in the mice vaccinated with S100A9 compared to the non-immunized mice (23.3 ± 4.3 min vs 6.9 ± 0.8 min, p<0.01), but bleeding time was same in both groups. There was no significant difference in platelet count in both groups. The formation of platelet thrombus under ex vivo was significantly reduced in S100A9 vaccine group compared to control group (14.8 ± 0.7 x10 4 /μm 2 vs 17.8 ± 0.9 x10 4 /μm 2 , p<0.05). In the IgG subclass ELISA, the IgG1:IgG2b ratio was greater than 1.0 in the S100A9 vaccine group. In the ELISPOT assay using splenocytes isolated from S100A9 immunized mice, stimulation with S100A9 partial peptide did not induce the production of IFN-gamma and IL-4 in comparison with KLH. Conclusion: The S100A9 vaccine could successfully prevent thrombus formation in MCA without influence on hemostasis nor eliciting an autoimmune response. S100A9 vaccine might shed light on the development of safe antithrombotic vaccine in ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document