Abstract 1033: Simultaneous Clot-targeted Factor Xa Inhibition And Selective Blockade Of Activated GPIIb/IIIa On Platelets Results In Delayed But Potent Antithrombotic Effects Without Bleeding Time Prolongation.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Christoph E Hagemeyer ◽  
Steffen U Eisenhardt ◽  
Nicole Bassler ◽  
Patrick Stoll ◽  
Meike Schwarz ◽  
...  

Background: We generated phage-display-derived anti-GPIIb/IIIa single-chain antibodies (e.g. scFv SCE5) that specifically bind to the activated GPIIb/IIIa only and thus specifically block activated platelets only. ScFv SCE5 demonstrates strong antithrombotic potency, comparable to the conformation-unspecific blockers tirofiban and eptifibatide. In contrast bleeding times were not prolonged with scFv SCE5. Here we now use the possibility to add effector molecules using molecular biology methods. The highly potent anticoagulant TAP (tick anticoagulant peptide), which is a direct factor Xa (fXa) inhibitor, was used as an effector molecule. Methods and Results: We genetically fused the activation-specific scFv with TAP, expressed the constructs in E.coli and purified the 39 kDa protein via its Histag binding to Nickel beads. Specific binding of the fusion molecules MA2/SCE5-TAP and strong inhibition of fibrinogen binding was proven in flow cytometry; anti-fXa activity was demonstrated in chromogenic assays. In vivo anticoagulative efficiency was determined by Doppler-flow in a ferric chloride-induced carotid artery thrombosis model in mice. Prolongation in occlusion time with SCE5-TAP was significantly stronger compared to SCE5 alone, recombinant TAP, non-binding mut-scFv-TAP as well as the clinical used drugs enoxaparine and eptifibatide. In contrast to the other anticoagulants tested, bleeding time was not prolonged by SCE5-TAP. Flow experiments studying platelet adhesion on collagen revealed a possible mechanism for the unique finding of a fully normal bleeding time: LIBS exposure on adhering platelets and as such the anticoagulative targeting potency of SCE5-TAP was delayed until considerable layers of platelets were deposited. Conclusions: The combination of activation-specific GPIIb/IIIa blockade and fXa inhibition in one clot-targeted molecule further improves in-vivo antithrombotic efficiency without causing any bleeding time prolongation. The delay of the observed targeting effect may allow a sealing of injuries with platelet layers but may be in time for the prevention of occlusive platelet aggregates. The described blockers represent a new type of highly selective drugs that warrant further clinical development.

1990 ◽  
Vol 63 (02) ◽  
pp. 220-223 ◽  
Author(s):  
J Hauptmann ◽  
B Kaiser ◽  
G Nowak ◽  
J Stürzebecher ◽  
F Markwardt

SummaryThe anticoagulant effect of selected synthetic inhibitors of thrombin and factor Xa was studied in vitro in commonly used clotting assays. The concentrations of the compounds doubling the clotting time in the various assays were mainly dependent on their thrombin inhibitory activity. Factor Xa inhibitors were somewhat more effective in prolonging the prothrombin time compared to the activated partial thromboplastin time, whereas the opposite was true of thrombin inhibitors.In vivo, in a venous stasis thrombosis model and a thromboplastin-induced microthrombosis model in rats the thrombin inhibitors were effective antithrombotically whereas factor Xa inhibitors of numerically similar IQ value for the respective enzyme were not effective at equimolar dosageThe results are discussed in the light of the different prelequisiles and conditions for inhibition of thrombin and factor Xa in the course of blood clotting.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
AB Kelly ◽  
UM Marzec ◽  
W Krupski ◽  
A Bass ◽  
Y Cadroy ◽  
...  

Abstract To determine the role of thrombin in high blood flow, platelet- dependent thrombotic and hemostatic processes we measured the relative antithrombotic and antihemostatic effects in baboons of hirudin, a highly potent and specific antithrombin, and compared the effects of heparin, an antithrombin III-dependent inhibitor of thrombin. Thrombus formation was determined in vivo using three relevant models (homologous endarterectomized aorta, collagen-coated tubing, and Dacron vascular graft) by measuring: (1) platelet deposition, using gamma camera imaging of 111In-platelets; (2) fibrin deposition, as assessed by the incorporation of circulating 125I-fibrinogen; and (3) occlusion. The continuous intravenous infusion of 1, 5, and 20 nmol/kg per minute of recombinant hirudin (desulfatohirudin) maintained constant plasma levels of 0.16 +/- 0.03, 0.79 +/- 0.44, and 3.3 +/- 0.77 mumol/mL, respectively. Hirudin interrupted platelet and fibrin deposition in a dose-dependent manner that was profound at the highest dose for all three thrombogenic surfaces and significant at the lowest dose for thrombus formation on endarterectomized aorta. Thrombotic occlusion was prevented by all doses studied. In contrast, heparin did not inhibit either platelet or fibrin deposition when administered at a dose that maximally prolonged clotting times (100 U/kg) (P greater than .1), and only intermediate effects were produced at 10-fold that dose (1,000 U/kg). Moreover, heparin did not prevent occlusion of the test segments. Hirudin inhibited platelet hemostatic function in concert with its antithrombotic effects (bleeding times were prolonged by the intermediate and higher doses). By comparison, intravenous heparin failed to affect the bleeding time at the 100 U/kg dose (P greater than .5), and only minimally prolonged the bleeding time at the 1,000 U/kg dose (P less than .05). We conclude that platelet-dependent thrombotic and hemostatic processes are thrombin-mediated and that the biologic antithrombin hirudin produces a potent, dose-dependent inhibition of arterial thrombus formation that greatly exceeds the minimal antithrombotic effects produced by heparin.


1987 ◽  
Author(s):  
D Hoppensteadt ◽  
A Kumar ◽  
J Fareed ◽  
J Mardigian

Non-antithrombin III mediated effects such as interaction with heparin cofactor II, modulation of endothelium and polymorphonuclear leukocytes contribute to the overall antithrombotic effects of glycosaminoglycans. In order to study the role of these dermatans, we investigated their in vitro anticoagulant effects using the clot based (PT, APTT, TT, and Heptest), antiprotease (anti IIa and anti Xa) and Thromboplastin C activated fibrinopeptide A generation test. The in vivo antithrombotic actions were investigated, against activated and non activated prothrombin complex concentrates, and in combination with Russells viper venom in jugular and femoral vein stasis thrombosis models (rabbit). The dermatans studied consisted of a standard dermatan of porcine intestinal origin and four sulfated dermatans with varying degrees of sulfation. All of the dermatans studied showed weak anticoagulant effects on the routinely performed clot based assays. Marked variability was seen on the protease inhibition (anti Xa and anti IIa) assays. In the in vivo studies all dermatans studied showed varying degrees of antithrombotic actions against various thrombogenic agents in a modified stasis thrombosis model. Sulfation appeared to produce stronger anticoagulant effects as determined by in vitro assays, whereas the intravenous antithrombotic actions of native dermatan were stronger than sulfated derivatives. This data suggests that dermatans produce their antithrombotic actions via non-antithrombin III mediated pathways. Furthermore, in vitro testing methods are of limited value in the evaluation of the biologic actions of dermatans and their derivatives.


1987 ◽  
Author(s):  
J M Walenga ◽  
J Fareed ◽  
M Petitou ◽  
J C Lormeau ◽  
M Samama ◽  
...  

We have previously reported on the antithromboticaction of a chemically synthesized heparin pentasaccharide which exhibits high affinity to anti thrombinIII and sole anti-factor Xa activity. In order to investigate the relative importance of the 3-0 sulfo group of this pentasaccharide, we evaluated the in vitro and in vivo antithrombotic activity of a synthetic pentasccharide devoid of the sulfo group at the third position of the glucosamine residue. In amidolytic and clot-based assays the 3-0 de- sulfated pentasaccharide (3-0-DP) failed to exhibit any antifactor Xa actions at concentrations <100 ug/ml in humanor rabbit plasmas, whereas pentasaccharide showed strong factor Xa inhibition at 1.0 ug/ml IK-=3.2x10 M)and at 10.0 ug/ml in rabbit plasma (K.=9.0×10™7 M). Using a rabbit stasis thrombosis model in which thrombosis was induce by human serum or an activated pro-thrombin complex concentrate, 3-0-DP failed to produce any antithrombotic action in acute intravenous regimens at dosages up to 200 ug/kg. In these two models, pentasaccharide produced >80% inhibition of induced thrombosis. These studies demonstrate the critical importance of the 3-0 sulfo group in this heparin pentasaccharide for the determination of antithrombotic activity, and that in this type of oligosaccharide, anti-factor Xa activity is responsible for producing the antithrombotic effect.


1999 ◽  
Vol 97 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Johanna ALBERT ◽  
N. Håkan WALLÉN ◽  
Nailin LI ◽  
Claes FROSTELL ◽  
Paul HJEMDAHL

Experimental models have indicated prothrombotic effects of inhibition of nitric oxide (NO) production, and anti-thrombotic effects of inhaled NO, but the influence of NO on platelet function in vivo in humans is not well established. We therefore investigated the effects of systemic inhibition of NO synthesis by NG-monomethyl-⌊-arginine (⌊-NMMA) and of NO inhalation on platelet function in vivo. On two occasions, ⌊-NMMA (13.5 mg/kg) or saline infusion was administered to 14 healthy volunteers in a double-blind cross-over study. After a 30 min infusion of ⌊-NMMA or placebo, NO inhalation (30 p.p.m) was added during the remaining 30 min of infusion, on both occasions. Measurements included filtragometry ex vivo (reflecting platelet aggregability), flow-cytometric evaluation of platelets in whole blood (fibrinogen binding and P-selectin expression), plasma β-thromboglobulin (reflecting platelet secretion), cGMP in platelets and plasma, thrombin generation markers (thrombin fragment 1+2 and thrombin–antithrombin complexes) in plasma, and bleeding time. l-NMMA increased blood pressure and decreased heart rate. NO inhalation did not influence blood pressure or heart rate, but caused a 3-fold elevation in plasma cGMP levels (P < 0.001). Neither ⌊-NMMA nor NO influenced filtragometry readings or flow-cytometric determinations of platelet fibrinogen binding and P-selectin expression. Furthermore, plasma β-thromboglobulin, platelet cGMP and thrombin generation markers were not influenced by either treatment. Bleeding time was not influenced by ⌊-NMMA compared with placebo, but was increased by ≈ 25% during NO inhalation (P < 0.01), whether NO synthesis had been inhibited or not. The prolongation of bleeding time by inhaled NO was not accompanied by any effect on the platelet variables assessed. The present results indicate that circulating platelets are not influenced by endogenous or inhaled NO, presumably due to the rapid inactivation of NO in the blood. This does not exclude possible effects of endothelial NO in the interface between the blood and the vessel wall.


2012 ◽  
Vol 107 (02) ◽  
pp. 253-259 ◽  
Author(s):  
Toshio Fukuda ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Toshiro Shibano ◽  
Yoshiyuki Morishima

SummaryEdoxaban, an oral, direct factor Xa inhibitor, has a similar or low incidence of bleeding events compared with other anticoagulants in clinical trials. Therefore, agents to reverse the anticoagulant effects of edoxaban could be desirable in emergency situations. In this study, the reversal effects of haemostatic agents were determined on prothrombin time (PT) prolongation in vitro and bleeding time prolongation in vivo by edoxaban. PT using human plasma was measured in the presence of edoxaban at therapeutic and excess concentrations with the haemostatic agents, prothrombin complex concentrate (PPSB-HT), activated prothrombin complex concentrate (Feiba), and recombinant factor VIIa (rFVIIa). In rats, rFVIIa and Feiba was given during intensive anticoagulation with edoxaban. The haemostatic effect was evaluated in a model of planta template bleeding and a potential prothrombotic effect was evaluated in a venous thrombosis model. PPSB-HT, Feiba, and rFVIIa concentration-dependently shortened PT prolonged by edoxaban. Among these, rFVIIa and Feiba showed potent activities in reversing the PT prolongation by edoxaban. rFVIIa (1 and 3 mg/kg, i.v.) and Feiba (100 U/kg, i.v.) significantly reversed edoxaban (1 mg/kg/h)-induced prolongation of bleeding time in rats. In a rat venous thrombosis model, no potentiation of thrombus formation was observed when the highest dose (3 mg/kg) of rFVIIa was added to edoxaban (0.3 and 1 mg/kg/h) compared with the control. The present study indicated that rFVIIa, Feiba, and PPSB-HT have the potential to be reversal agents for edoxaban.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1851-1851 ◽  
Author(s):  
Taketoshi Furugohri ◽  
Yuko Honda ◽  
Chikako Matsumoto ◽  
Koji Isobe ◽  
Nobutoshi Sugiyama ◽  
...  

Abstract DU-176b is a novel potent, orally active and selective direct inhibitor of factor Xa (FXa). Direct FXa inhibitors have been reported to exert little effect on bleeding time at antithrombotic doses in animal studies. The aim of the present study was to compare the antithrombotic and hemorrhagic effects of DU-176b with unfractionated heparin (UFH), low molecular weight heparin (LMWH; dalteparin) and warfarin in rat models of thrombosis and hemorrhage. Rats were treated with DU-176b, UFH and LMWH by continuous intravenous infusion for 2 – 2.5 h, and with warfarin orally once daily for 4 days before thrombosis or hemorrhage. Thrombosis was induced by the insertion of a platinum wire into the inferior vena cava and left for 60 min. Tail template bleeding time was measured after an incision on the tail. DU-176b dose-dependently inhibited thrombus formation in the venous thrombosis model. The dose required for 50% inhibition (ED50) was 0.076 mg/kg/h. In contrast, the dose of DU-176b to double template bleeding time (BT2) was 0.75 mg/kg/h, indicating 10-fold dissociation of the doses of antithrombotic and hemorrhagic effects. UFH, LMWH and warfarin also prevented thrombus formation (ED50 = 56 U/kg/h, 66 U/kg/h and 0.16 mg/kg/day, respectively), but prolonged bleeding time at slightly higher doses (BT2 = 73 U/kg/h, 135 U/kg/h and 0.21 mg/kg/day, respectively) than the effective doses. The dissociation of the doses for these compounds was only 1.3, 2.0 and 1.3-fold, respectively. Moreover, the slope of dose-antithrombotic response curve of DU-176b was significantly slighter than those of UFH, LMWH and warfarin, indicating that the therapeutic dose range of DU-176b would be wider than those of the other anticoagulants. These results suggest that direct and selective inhibition of FXa by DU-176b is preferable for the treatment of thrombotic diseases in the aspect of lack of compromising primary hemostasis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1874-1874 ◽  
Author(s):  
Toshio Fukuda ◽  
Yuko Honda ◽  
Chikako Matsumoto ◽  
Nobutoshi Sugiyama ◽  
Tadashi Matsushita ◽  
...  

Abstract Antithrombin (AT) is a major physiological inhibitor of coagulation factors, primarily inhibiting thrombin and factor Xa (FXa). Binding of heparin and its related pentasaccharides, fondaparinux, to AT dramatically accelerates inhibition of thrombin and FXa. Entire AT-dependency of heparins may result in decreased anticoagulant effects in patients with inherited or acquired AT deficiencies. Objectives: We have developed an orally active direct (i.e. AT-independent) FXa inhibitor, DU-176b. The objectives of this study were to examine the anticoagulant and antithrombotic effects of DU-176b, fondaparinux, and heparin in heterozygous AT deficient (AT+/−) mice (Refs 1, 2), and to determine the impact of AT deficiency on the efficacies of these anticoagulants. Methods: [In vitro study] Plasma obtained from wild type (AT+/+, C57BL/6J) and AT+/− mice were subjected to measurement of levels of AT antigen and activity. The anticoagulant effects on prothrombin time (PT) and activated partial thromboplastin time (APTT) was measured and the drug concentrations were calculated required to double the clotting time (CT2). [In vivo study] Male AT+/+ and AT+/− mice were fasted over night. Thrombosis was induced in the inferior vena cava by applying filter paper (1 x 5 mm) presoaked in 15% FeCl3 for 10 min. Thrombus was removed 60 min after FeCl3 treatment and its protein content was assessed by Bradford method. DU-176b was orally administered 60 min before, fondaparinux was given s.c. 30 min before, and heparin was injected into the jugular vein 3 min before thrombus induction. Relative potencies of antithrombotic effects in AT+/− mice to those in AT+/+ mice were analyzed by parallel line assay. Results: [In vitro study] Plasma levels of AT antigen and activity in AT+/− mice were deceased to 40% compared with AT+/+ plasma. PT-CT2 of DU-176b was 0.72 μM in AT+/+ plasma and 0.74 μM in AT+/− plasma, respectively, indicating that anticoagulant activity of the direct FXa inhibitor was not affected by heterozygous AT deficiency. APTT-CT2 of fondaparinux and heparin in AT+/+ plasma was 3.8 μM and 14 mU/mL, respectively, whereas APTT-CT2 in AT+/− plasma was 9.2 μM and 20 mU/mL, respectively. Therefore, anticoagulant activities of such AT-dependent inhibitors were attenuated in AT+/− plasma. [In vivo study] All three anticoagulants inhibited venous thrombus formation of AT+/+ mice in dose-dependent manners. In AT+/− mice, the antithrombotic effects of fondaparinux and heparin were less potent than those in AT+/+ mice. In contrast, DU-176b prevented thrombus formation equipotently in both mice. Relative potencies of DU-176b, fondaparinux and heparin were 0.84, 0.40, and 0.70, respectively. Conclusion: DU-176b exerts a comparable antithrombotic effect even in individuals with low plasma AT antigens and activities. Thus, DU-176b may be prioritized over AT-dependent agents for use at the fixed dose in patients with lower plasma AT concentrations.


Sign in / Sign up

Export Citation Format

Share Document