An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote and in bioanalytical applications

2019 ◽  
Vol 400 (3) ◽  
pp. 351-366 ◽  
Author(s):  
Mikhail Barkovskiy ◽  
Elena Ilyukhina ◽  
Martin Dauner ◽  
Andreas Eichinger ◽  
Arne Skerra

Abstract Colchicine is a toxic alkaloid prevalent in autumn crocus (Colchicum autumnale) that binds to tubulin and inhibits polymerization of microtubules. Using combinatorial and rational protein design, we have developed an artificial binding protein based on the human lipocalin 2 that binds colchicine with a dissociation constant of 120 pm, i.e. 10000-fold stronger than tubulin. Crystallographic analysis of the engineered lipocalin, dubbed Colchicalin, revealed major structural changes in the flexible loop region that forms the ligand pocket at the open end of the eight-stranded β-barrel, resulting in a lid-like structure over the deeply buried colchicine. A cis-peptide bond between residues Phe71 and Pro72 in loop #2 constitutes a peculiar feature and allows intimate contact with the tricyclic ligand. Using directed evolution, we achieved an extraordinary dissociation half-life of more than 9 h for the Colchicalin-colchicine complex. Together with the chemical robustness of colchicine and availability of activated derivatives, this also opens applications as a general-purpose affinity reagent, including facile quantification of colchicine in biological samples. Given that engineered lipocalins, also known as Anticalin® proteins, represent a class of clinically validated biopharmaceuticals, Colchicalin may offer a therapeutic antidote to scavenge colchicine and reverse its poisoning effect in situations of acute intoxication.

2019 ◽  
Vol 26 (6) ◽  
pp. 449-457
Author(s):  
Ting Song ◽  
Keke Cao ◽  
Yu dan Fan ◽  
Zhichao Zhang ◽  
Zong W. Guo ◽  
...  

Background: The significance of multi-site phosphorylation of BCL-2 protein in the flexible loop domain remains controversial, in part due to the lack of structural biology studies of phosphorylated BCL-2. Objective: The purpose of the study is to explore the phosphorylation induced structural changes of BCL-2 protein. Methods: We constructed a phosphomietic mutant BCL-2(62-206) (t69e, s70e and s87e) (EEEBCL- 2-EK (62-206)), in which the BH4 domain and the part of loop region was truncated (residues 2-61) to enable a backbone resonance assignment. The phosphorylation-induced structural change was visualized by overlapping a well dispersed 15N-1H heteronuclear single quantum coherence (HSQC) NMR spectroscopy between EEE-BCL-2-EK (62-206) and BCL-2. Results: The EEE-BCL-2-EK (62-206) protein reproduced the biochemical and cellular activity of the native phosphorylated BCL-2 (pBCL-2), which was distinct from non-phosphorylated BCL-2 (npBCL-2) protein. Some residues in BH3 binding groove occurred chemical shift in the EEEBCL- 2-EK (62-206) spectrum, indicating that the phosphorylation in the loop region induces a structural change of active site. Conclusion: The phosphorylation of BCL-2 induced structural change in BH3 binding groove.


2018 ◽  
Author(s):  
Jianfu Zhou ◽  
Alexandra E. Panaitiu ◽  
Gevorg Grigoryan

AbstractThe ability to routinely design functional proteins, in a targeted manner, would have enormous implications for biomedical research and therapeutic development. Computational protein design (CPD) offers the potential to fulfill this need, and though recent years have brought considerable progress in the field, major limitations remain. Current state-of-the-art approaches to CPD aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a robust general solution to CPD has yet to be found. Here we propose a fundamentally novel design framework—one based on identifying and applying patterns of sequence-structure compatibility found in known proteins, rather than approximating them from models of inter-atomic interactions. Specifically, we systematically decompose the target structure to be designed into structural building blocks we call TERMs (tertiary motifs) and use rapid structure search against the Protein Data Bank (PDB) to identify sequence patterns associated with each TERM from known protein structures that contain it. These results are then combined to produce a sequence-level pseudo-energy model that can score any sequence for compatibility with the target structure. This model can then be used to extract the optimal-scoring sequence via combinatorial optimization or otherwise sample the sequence space predicted to be well compatible with folding to the target. Here we carry out extensive computational analyses, showing that our method, which we dub dTERMen (design with TERM energies): 1) produces native-like sequences given native crystallographic or NMR backbones, 2) produces sequence-structure compatibility scores that correlate with thermodynamic stability, and 3) is able to predict experimental success of designed sequences generated with other methods, and 4) designs sequences that are found to fold to the desired target by structure prediction more frequently than sequences designed with an atomistic method. As an experimental validation of dTERMen, we perform a total surface redesign of Red Fluorescent Protein mCherry, marking a total of 64 residues as variable. The single sequence identified as optimal by dTERMen harbors 48 mutations relative to mCherry, but nevertheless folds, is monomeric in solution, exhibits similar stability to chemical denaturation as mCherry, and even preserves the fluorescence property. Our results strongly argue that the PDB is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. This is highly significant, given that the structural database will only continue to grow, and signals the possibility of a whole host of novel data-driven CPD methods. Because such methods are likely to have orthogonal strengths relative to existing techniques, they could represent an important step towards removing remaining barriers to robust CPD.


2021 ◽  
Vol 77 (5) ◽  
pp. 645-662
Author(s):  
Risako Tamura-Sakaguchi ◽  
Rie Aruga ◽  
Mika Hirose ◽  
Toru Ekimoto ◽  
Takuya Miyake ◽  
...  

Antibody labeling has been conducted extensively for structure determination using both X-ray crystallography and electron microscopy (EM). However, establishing target-specific antibodies is a prerequisite for applying antibody-assisted structural analysis. To expand the applicability of this strategy, an alternative method has been developed to prepare an antibody complex by inserting an exogenous epitope into the target. It has already been demonstrated that the Fab of the NZ-1 monoclonal antibody can form a stable complex with a target containing a PA12 tag as an inserted epitope. Nevertheless, it was also found that complex formation through the inserted PA12 tag inevitably caused structural changes around the insertion site on the target. Here, an attempt was made to improve the tag-insertion method, and it was consequently discovered that an alternate tag (PA14) could replace various loops on the target without inducing large structural changes. Crystallographic analysis demonstrated that the inserted PA14 tag adopts a loop-like conformation with closed ends in the antigen-binding pocket of the NZ-1 Fab. Due to proximity of the termini in the bound conformation, the more optimal PA14 tag had only a minor impact on the target structure. In fact, the PA14 tag could also be inserted into a sterically hindered loop for labeling. Molecular-dynamics simulations also showed a rigid structure for the target regardless of PA14 insertion and complex formation with the NZ-1 Fab. Using this improved labeling technique, negative-stain EM was performed on a bacterial site-2 protease, which enabled an approximation of the domain arrangement based on the docking mode of the NZ-1 Fab.


2019 ◽  
Vol 117 (2) ◽  
pp. 1059-1068 ◽  
Author(s):  
Jianfu Zhou ◽  
Alexandra E. Panaitiu ◽  
Gevorg Grigoryan

Current state-of-the-art approaches to computational protein design (CPD) aim to capture the determinants of structure from physical principles. While this has led to many successful designs, it does have strong limitations associated with inaccuracies in physical modeling, such that a reliable general solution to CPD has yet to be found. Here, we propose a design framework—one based on identifying and applying patterns of sequence–structure compatibility found in known proteins, rather than approximating them from models of interatomic interactions. We carry out extensive computational analyses and an experimental validation for our method. Our results strongly argue that the Protein Data Bank is now sufficiently large to enable proteins to be designed by using only examples of structural motifs from unrelated proteins. Because our method is likely to have orthogonal strengths relative to existing techniques, it could represent an important step toward removing remaining barriers to robust CPD.


2020 ◽  
Vol 79 (5) ◽  
pp. 530-541 ◽  
Author(s):  
Zhen Jin ◽  
Kyung Eun Kim ◽  
Hyun Joo Shin ◽  
Eun Ae Jeong ◽  
Kyung-Ah Park ◽  
...  

Abstract Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.


Author(s):  
Kristjan Bloudoff ◽  
T. Martin Schmeing

Nonribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize important secondary metabolites such as antibiotics. NRPSs follow a modular synthetic logic whereby each successive amino-acid monomer is added to the peptide chain by successive multi-domain modules. The condensation domain catalyzes the central chemical event in the synthetic cycle, peptide-bond formation, and is present in every elongation module of the NRPS. Viomycin is an antituberculosis nonribosomal peptide that is synthesized by a series of four NRPS proteins and then modified by tailoring proteins. In order to study the mechanisms of peptide-bond formation in viomycin and in NRPSs in general, a structural study of the first condensation domain of the viomycin synthetase protein VioA (VioA-C1) was initiated. The gene for VioA-C1 was cloned from genomic DNA ofStreptomyces vinaceus, expressed as an octahistidine-tagged construct and purified by column chromatography. VioA-C1 was crystallized using the sitting-drop vapor-diffusion method. X-ray diffraction data were collected on a rotating-anode source to 2.9 Å resolution. The data could be indexed in the orthorhombic space groupP212121, with unit-cell parametersa= 46.165,b= 68.335,c= 146.423 Å. There is likely to be one monomer in the asymmetric unit, giving a solvent content of 49.2% and a Matthews coefficient (VM) of 2.42 Å3 Da−1. Structural determination is in progress.


1992 ◽  
Vol 167 (1) ◽  
pp. 91-117 ◽  
Author(s):  
M. B. Rheuben

The ultrastructural changes associated with the early stages of degeneration of the larval mesothoracic muscle fibers of Manduca sexta were examined during the prepupal period and on the first day after ecdysis. Over this 5 day period, the muscle fibers decrease in cross-sectional area but increase in apparent surface area compared to the dimensions of early fifth-instar fibers. Large numbers of electron-dense granules or droplets are formed and extruded from the muscle cytoplasm into the hemolymph; this process may account for some of the decrease in muscle fiber mass and may represent a developmental mechanism for recycling nutrients. As the fibers shrink, the thick basal lamina is thrown into folds. Phagocytic hemocytes (granulocytes) congregate in clusters over the surface of the degenerating fibers and appear to remove specifically the basal lamina. The timely removal of the thick larval basal lamina may be essential for subsequent fusion of myoblasts to the residual larval myofibers. The contractile elements within the degenerating muscle fibers become disorganized but are not dysfunctional at the end of the first 12 h after the pupal ecdysis. Tracheoles withdraw from intimate contact with each muscle fiber in its clefts and T-tubules and associate in groups adjacent to it. Mitochondria appear to be degenerating. These structural changes are concurrent with a previously observed decline in resting potential and suggest that a significant change in the electrical properties of the muscle fibers should be expected as well.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130568 ◽  
Author(s):  
Keith Moffat

Time-resolved X-ray crystallography and solution scattering have been successfully conducted on proteins on time-scales down to around 100 ps, set by the duration of the hard X-ray pulses emitted by synchrotron sources. The advent of hard X-ray free-electron lasers (FELs), which emit extremely intense, very brief, coherent X-ray pulses, opens the exciting possibility of time-resolved experiments with femtosecond time resolution on macromolecular structure, in both single crystals and solution. The X-ray pulses emitted by an FEL differ greatly in many properties from those emitted by a synchrotron, in ways that at first glance make time-resolved measurements of X-ray scattering with the required accuracy extremely challenging. This opens up several questions which I consider in this brief overview. Are there likely to be chemically and biologically interesting structural changes to be revealed on the femtosecond time-scale? How shall time-resolved experiments best be designed and conducted to exploit the properties of FELs and overcome challenges that they pose? To date, fast time-resolved reactions have been initiated by a brief laser pulse, which obviously requires that the system under study be light-sensitive. Although this is true for proteins of the visual system and for signalling photoreceptors, it is not naturally the case for most interesting biological systems. To generate more biological targets for time-resolved study, can this limitation be overcome by optogenetic, chemical or other means?


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Ajay R. Wagh ◽  
Kakoli Bose

Serine protease high temperature requirement protease A2 (HtrA2) is involved in apoptosis and protein quality control. However, one of its murine inactive mutants (S276C aka mnd2) is associated with motor neuron degeneration 2. Similarly, this conserved mutation in human HtrA2 (hHtrA2) also renders the protease inactive, implicating pathogenicity. However, the structural determinants for its inactivation have not yet been elucidated. Here, using multidisciplinary approach, we studied the structural basis of inactivity associated with this mutation in hHtrA2. Characterization of secondary and tertiary structural properties, protein stability, oligomeric properties, and enzyme activity for both wild-type and mutant has been performed using biophysical and functional enzymology studies. The structural comparison at atomic resolution has been carried out using X-ray crystallography. While enzyme kinetics showed inactivity, spectroscopic probes did not identify any significant secondary structural changes in the mutant. X-ray crystallographic analysis of the mutant protein at 2 Å resolution highlighted the significance of a water molecule that plays important role in mediating intermolecular interactions for maintaining the functional ensemble of the protease. Overall, the crystallographic data along with biophysical and enzymology studies helped decipher the structural basis of inactivity of hHtrA2S276C, which might pave way toward further investigating its correlation with aberration of normal cellular functions, hence pathogenicity.


2014 ◽  
Vol 89 (1) ◽  
pp. 833-843 ◽  
Author(s):  
Ilona P. Deuzing ◽  
Charlotte Charpentier ◽  
David W. Wright ◽  
Sophie Matheron ◽  
Jack Paton ◽  
...  

ABSTRACTInfection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have described the development of HIV-1 resistance to NRTIs and identified mutations in the polymerase domain of RT. Recent studies have shown that mutations in the connection and RNase H domains of HIV-1 RT may also contribute to resistance. However, only limited information exists regarding the resistance of HIV-2 to NRTIs. In this study, therefore, we analyzed the polymerase, connection, and RNase H domains of RT in HIV-2 patients failing NRTI-containing therapies. Besides the key resistance mutations K65R, Q151M, and M184V, we identified a novel mutation, V111I, in the polymerase domain. This mutation was significantly associated with mutations K65R and Q151M. Sequencing of the connection and RNase H domains of the HIV-2 patients did not reveal any of the mutations that were reported to contribute to NRTI resistance in HIV-1. We show that V111I does not strongly affect drug susceptibility but increases the replication capacity of the K65R and Q151M viruses. Biochemical assays demonstrate that V111I restores the polymerization defects of the K65R and Q151M viruses but negatively affects the fidelity of the HIV-2 RT enzyme. Molecular dynamics simulations were performed to analyze the structural changes mediated by V111I. This showed that V111I changed the flexibility of the 110-to-115 loop region, which may affect deoxynucleoside triphosphate (dNTP) binding and polymerase activity.IMPORTANCEMutation V111I in the HIV-2 reverse transcriptase enzyme was identified in patients failing therapies containing nucleoside analogues. We show that the V111I change does not strongly affect the sensitivity of HIV-2 to nucleoside analogues but increases the fitness of viruses with drug resistance mutations K65R and Q151M.


Sign in / Sign up

Export Citation Format

Share Document