Effect of Various Processing Conditions on the Tensile Properties and Structural Developments of EN AW 2014 Aluminium Alloy

2008 ◽  
Vol 27 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Jana Bidulská ◽  
Tibor Kvačkaj ◽  
Robert Bidulsky ◽  
Marco Actis Grande
2014 ◽  
Vol 984-985 ◽  
pp. 586-591 ◽  
Author(s):  
R. Ashok Kumar ◽  
M.R. Thansekhar

— For fabricating light weight structures, it requires high strength-to weight ratio. AA6061 aluminium alloy is widely used in the fabrication of light weight structures. A356 aluminium alloy has wide spread application in aerospace industries. Friction stir welding is solid state joining process which is conducting for joining similar and dissimilar materials. The friction stir welding parameters play an important role for deciding the strength of welded joints. In this investigation, A356 and AA6061 alloys were friction stir welded by varying triangular, square, hexagonal pin profiles of tool keeping the remaining parameters same and AA6061 alloys were friction stir welded by varying tool shoulder diameter as 12mm,15mm,18mm without changing other parameters. Tensile properties of each joint have been analyzed microscopically. From the experimental results, it is observed that hexagonal pin profiled tool and 15mm shoulder diameter tool provides higher tensile properties when compared to other tools.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2677
Author(s):  
Lukas Hentschel ◽  
Frank Kynast ◽  
Sandra Petersmann ◽  
Clemens Holzer ◽  
Joamin Gonzalez-Gutierrez

The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The medical industry could significantly benefit from the use of additive manufacturing for the onsite fabrication of customized medical aids and therapeutic devices in a fast and economical way. In the medical field, the utilized materials need to be certified for such applications and cannot be altered in any way to make them printable, because modifications annul the certification. Therefore, it is necessary to modify the processing conditions rather than the materials for successful printing. In this research, a medical-grade poly(methyl methacrylate) was analyzed. The deposition parameters were kept constant, while the drop aspect ratio, discharge rate, melt temperatures, and build chamber temperature were varied to obtain specimens with different geometrical accuracy. Once satisfactory geometrical accuracy was obtained, tensile properties of specimens printed individually or in batches of five were tested in two different orientations. It was found that parts printed individually with an XY orientation showed the highest tensile properties; however, there is still room for improvement by optimizing the processing conditions to maximize the mechanical strength of printed specimens.


2014 ◽  
Vol 1017 ◽  
pp. 495-499
Author(s):  
Ya Dong Gong ◽  
Chao Wang ◽  
Jun Cheng ◽  
Xue Long Wen ◽  
Guo Qiang Yin

Orthogonal experiments of micro mill-grinding were conducted on aluminium alloy 6061. Electroplated CBN compound tools were used in machining. Surface topography and roughness of the machined workpieces were measured and analyzed. Influence rules of radial cutting depth,feed rate and spindle speed on surface roughness in micro mill-grinding were studied. The results were compared with those in micro milling. It shows that the influence rules of processing parameters on surface roughness in micro mill-grinding are approximately same with those in micro milling. And in the same processing conditions, the surface roughness of micro mill-grinding is better than that of micro milling. The minimum value of surface roughness Ra of micro mill-grinding is 0.609μm in the experiments.


Sign in / Sign up

Export Citation Format

Share Document