scholarly journals Chunk concatenation evolves with practice and sleep-related enhancement consolidation in a complex arm movement sequence

2016 ◽  
Vol 51 (1) ◽  
pp. 5-17
Author(s):  
Klaus Blischke ◽  
Andreas Malangré

AbstractThis paper addresses the notion of chunk concatenation being associated with sleep-related enhancement consolidation of motor sequence memory, thereby essentially contributing to improvements in sequence execution speed. To this end, element movement times of a multi-joint arm movement sequence incorporated in a recent study by Malangré et al. (2014) were reanalyzed. As sequence elements differed with respect to movement distance, element movement times had to be purged from differences solely due to varying trajectory lengths. This was done by dividing each element movement time per subject and trial block by the respective “reference movement time” collected from subjects who had extensively practiced each sequence element in isolation. Any differences in these “relative element movement times” were supposed to reflect element-specific “production costs” imposed solely by the sequence context. Across all subjects non-idiosyncratic, lasting sequence segmentation was shown, and four possible concatenation points (i.e. transition points between successive chunks) within the original arm movement sequence were identified. Based on theoretical suppositions derived from previous work with the discrete sequence production task and the dual processor model (Abrahamse et al., 2013), significantly larger improvements in transition speed occurring at these four concatenation points as compared to the five fastest transition positions within the sequence (associated with mere element execution) were assumed to indicate increased chunk concatenation. As a result, chunk concatenation was shown to proceed during acquisition with physical practice, and, most importantly, to significantly progress some more during retention following a night of sleep, but not during a waking interval.

1991 ◽  
Vol 8 (3) ◽  
pp. 210-220 ◽  
Author(s):  
Digby Elliott ◽  
Susan Gray ◽  
Daniel J. Weeks

The present study was designed to determine whether the verbal-motor performance deficits sometimes exhibited by Down syndrome persons interfere with their capacity to acquire a novel motor task. Mentally handicapped adults with and without Down syndrome, as well as nonhandicapped adults, practiced a verbally cued three-element movement sequence. When the verbal cue was terminated during retention, Down syndrome subjects made no more errors and performed the motor sequence just as rapidly as did the other mentally handicapped adults. However, Down syndrome subjects took longer to organize and initiate their movements. Both mentally handicapped groups performed more poorly than nonhandicapped subjects. The results provide partial support for the notion that Down syndrome persons have difficulty organizing limb movements on the basis of verbal instruction.


2018 ◽  
Author(s):  
Nicola J. Popp ◽  
Neda Kordjaz ◽  
Paul Gribble ◽  
Jörn Diedrichsen

2019 ◽  
Author(s):  
Bradly Alicea ◽  
Corey Bohil ◽  
Frank Biocca ◽  
Charles Owen

Our objective was to focus on linkages between the process of learning and memory and the placement of objects within an array of targets in a virtual workspace. Participants were instructed to place virtual objects serially within a three-dimensional target array. One phase presented each target sequentially, and required participants to make timed ballistic arm movements. The other phase presented all nine targets simultaneously, which required ballistic arm movement towards the correct target location as recalled from the learning phase. Movement time and accuracy were assessed using repeated-measures ANOVA, a hierarchical cluster analysis, and a multiple linear regression. Collectively, this revealed numerous speed and accuracy advantages and disadvantages for various positional combinations. Upper positions universally yielded longer movement times and larger error measurements. Individual ability for mental rotation combined with task learning over a fixed training interval was found to predict accuracy for specific locations. The prediction that location influences movement speed and accuracy was supported, but with some caveats. These results may be particularly useful in the design of instructor stations and other hybrid physical-virtual workspaces.


2018 ◽  
Author(s):  
Nicola J. Popp ◽  
Atsushi Yokoi ◽  
Paul L. Gribble ◽  
Jörn Diedrichsen

AbstractSkill learning involves the formation of stable motor patterns. In musical and athletic training, however, these stable motor habits can also impede the attainment of higher levels of performance. We developed an experimental paradigm to induce a specific motor pattern in the context of a discrete sequence production task and to investigate how these habits affect performance over a 3-week training period. Participants initially practiced small segments of 2 to 3 finger movements (“chunks”) and then learned longer sequences composed of these chunks. This initial training induced a persistent temporal pattern during execution, with shorter inter-press-intervals within a chunk and longer ones at chunk boundaries. This pattern remained stable during the subsequent 10 days of training, in which participants were asked to produce the sequence as fast as possible from memory. The habit was also preserved when the sequences were directly displayed, removing the need for memory recall. We were able to induce chunking patterns that were either beneficial or detrimental to performance by taking into consideration the biomechanical constraints of the sequences. While we observed an overall reduction in the detrimental effect of the disadvantageous chunking instructions with training, our results show that the degree to which these detrimental chunk structures were maintained, was predictive of lower levels of final performance. In sum, we were able to induce beneficial and detrimental motor habits in a motor sequence production task and show that these initial instructions influenced performance outcomes over a prolonged period of time.Significance StatementA habit is defined as an automatized action that resists modification once sufficiently established. Preventing bad habits, while reinforcing good habits, is a key objective when teaching new motor skills. While habit formation is an integral part of motor skill acquisition, previous research has focused on habit formation in terms of action selection. In this paper, we examine habit formation in terms of motor skill execution, after the action has been selected. We were able to induce beneficial or detrimental motor habits in the production of motor sequences. Habits were stable over a prolonged training period. Our results demonstrate how cognitive instruction can lead to persistent motor habits and we explore how these habits are potentially modified with training.


Author(s):  
Shang H. Hsu ◽  
Chien C. Huang

The purpose of this study was to investigate the effects of target width, movement direction, movement amplitude, and remote distance on remote positioning performance. Movement time and movement distance ratio were taken as measures of remote positioning performance. It was found that the effects of target width, movement amplitude, and movement direction on the two measures were significant. The effect of remote distance was significant only for movement distance ratio. The magnitude of the effect of target width on movement time was larger than that of movement amplitude; a modification of Fitts' Law was thus proposed. Moreover, there was an interactive effect between target width and movement direction- i.e., movement direction had an effect only when the target width was small. Among the eight movement directions, upward vertical movement was the best for remote positioning. The results shed some light onto the design of remote control user interface.


Author(s):  
John Sermarini ◽  
Joseph T. Kider ◽  
Joseph J. LaViola ◽  
Daniel S. McConnell

We present the results of a study investigating the influence of task and effector constraints on the kinematics of pointing movements performed in immersive virtual environments. We compared the effect of target width, as a task constraint, to the effect of movement distance, as an effector constraint, in terms of overall effect on movement time in a pointing task. We also compared a linear ray-cast pointing technique to a parabolic pointing technique to understand how interaction style may be understood in the context of task and effector constraints. The effect of target width as an information constraint on pointing performance was amplified in VR. Pointing technique acted as an effector constraint, with linear ray-cast pointing resulting in faster performance than parabolic pointers.


1998 ◽  
Vol 80 (3) ◽  
pp. 1562-1566 ◽  
Author(s):  
William T. Clower ◽  
Garrett E. Alexander

Clower, William T. and Garrett E. Alexander. Movement sequence-related activity reflecting numerical order of components in supplementary and presupplementary motor areas. J. Neurophysiol. 80: 1562–1566, 1998. The supplementary motor area (SMA) and presupplementary motor areas (pre-SMA) have been implicated in movement sequencing, and neurons in SMA have been shown to encode what might be termed the relational order among sequence components (e.g., movement X followed by movement Y). To determine whether other aspects of movement sequencing might also be encoded by SMA or pre-SMA neurons, we analyzed task-related activity recorded from both areas in conjunction with a sequencing task that dissociated the numerical order of components (e.g., movement X as the 2nd component, irrespective of which movements precede or follow X). Sequences were constructed from eight component movements, each characterized by three spatial variables (origin, direction, and endpoint). Task-related activity recorded from 56 SMA and 63 pre-SMA neurons was categorized according to both the epoch (delay, reaction time, and movement time) and the spatial variable or component movement with which it was associated. All but one instance of task-related activity was selective for one of the spatial variables (SV-selective) rather than for any of the component movements themselves. Of 110 instances of SV-selective activity in SMA, 43 (39%) showed significant effects of numerical order. The corresponding incidence in pre-SMA, 82 (71%) of 116, was substantially higher ( P < 0.00001). No effects of numerical order were evident among the hand paths, movement times, or electromyographic activity associated with task performance. We concluded that neurons in SMA and pre-SMA may encode the numerical order of components, at least for sequences that are distinguished mainly by that aspect of component ordering.


2019 ◽  
Vol 121 (6) ◽  
pp. 2088-2100 ◽  
Author(s):  
Giacomo Ariani ◽  
Jörn Diedrichsen

The ability to perform complex sequences of movements quickly and accurately is critical for many motor skills. Although training improves performance in a large variety of motor sequence tasks, the precise mechanisms behind such improvements are poorly understood. Here we investigated the contribution of single-action selection, sequence preplanning, online planning, and motor execution to performance in a discrete sequence production task. Five visually presented numbers cued a sequence of five finger presses, which had to be executed as quickly and accurately as possible. To study how sequence planning influenced sequence production, we manipulated the amount of time that participants were given to prepare each sequence by using a forced-response paradigm. Over 4 days, participants were trained on 10 sequences and tested on 80 novel sequences. Our results revealed that participants became faster in selecting individual finger presses. They also preplanned three or four sequence items into the future, and the speed of preplanning improved for trained, but not for untrained, sequences. Because preplanning capacity remained limited, the remaining sequence elements had to be planned online during sequence execution, a process that also improved with sequence-specific training. Overall, our results support the view that motor sequence learning effects are best characterized by improvements in planning processes that occur both before and concurrently with motor execution. NEW & NOTEWORTHY Complex skills often require the production of sequential movements. Although practice improves performance, it remains unclear how these improvements are achieved. Our findings show that learning effects in a sequence production task can be attributed to an enhanced ability to plan upcoming movements. These results shed new light on planning processes in the context of movement sequences and have important implications for our understanding of the neural mechanisms that underlie skill acquisition.


1980 ◽  
Vol 50 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Kimihiro Inomata

The effect of three different preparatory sets on reaction time (RT), movement time (MT) and reaction time-movement time (RT-MT) relationship was examined. All 15 subjects were required to perform under the three conditions regarding the relative payoff of stimulus and speed of movement. No significant effect on RT was found, while the significant difference between MT under MT-payoff condition and MT under RT-payoff condition was found. The correlations between RT and MT under MT-payoff condition and RT-MT-payoff condition are significant ( p < .05). Also high canonical correlation between RTs and MTs was found. Results suggested that the motor program in the simple task may be executed more effectively under MT-payoff condition than RT-payoff conditions and also that a certain amount of generality between RT and MT under the payoff conditions might exist in multivariate domains.


Sign in / Sign up

Export Citation Format

Share Document