scholarly journals A non-destructive method for estimating onion leaf area

2015 ◽  
Vol 54 (1) ◽  
Author(s):  
J.I. Córcoles ◽  
A. Domínguez ◽  
M.A. Moreno ◽  
J.F. Ortega ◽  
J.A. de Juan

AbstractLeaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain), during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m

2015 ◽  
Vol 54 (1) ◽  
pp. 17-30 ◽  
Author(s):  
J.I. Córcoles ◽  
A. Domínguez ◽  
M.A. Moreno ◽  
J.F. Ortega ◽  
J.A. de Juan

AbstractLeaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain), during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L) and the leaf diameter at a distance of 25% of the total leaf length (A25) gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non-destructive method.


1991 ◽  
Vol 57 (1-3) ◽  
pp. 107-128 ◽  
Author(s):  
Jennifer W. Chason ◽  
Dennis D. Baldocchi ◽  
Michael A. Huston

2016 ◽  
Vol 34 (3) ◽  
pp. 422-427 ◽  
Author(s):  
Wellington A Erlacher ◽  
Fábio L Oliveira ◽  
Gustavo S Fialho ◽  
Diego MN Silva ◽  
Arnaldo HO Carvalho

ABSTRACT The recent exploration of yacon demands scientific information for improving the crop production technology. This study aimed to set a leaf area estimate model for yacon plants, using non-destructive measurements of leaf length (L) and/or width (W). Sixty-four representative yacon plants were randomly selected in an experimental field during the full vegetative growth. One thousand leaves of various sizes were taken from those plants for setting and validating a model. The logarithmic model best fitted this purpose, the result of multiplying length by width being used as independent variable. Yacon leaf area can be determined with high precision and accuracy by LALW = (-27.7418 + (3.9812LW / ln LW ) , disregarding the leaf size.


2013 ◽  
Vol 17 (6) ◽  
pp. 595-601 ◽  
Author(s):  
Kleber M. Ribeiro ◽  
Roberto A. Braga ◽  
Myriane S. Scalco ◽  
Graham W. Horgan

The total leaf area (TLA) estimation is an important feature of the crops and their assessment a challenge, since the direct methods of obtaining it are destructive and time consuming. Non-destructive methods have been explored to obtain the TLA by indirect approaches, in turn creating other features, as the leaf area index. The development of non-destructive technology to access the TLA of a plant has been the subject of much research, and the optical metrology is an promising approach. In this work, some indirect methods associated with optical approaches were evaluated as an alternative to obtain the TLA of the coffee plant. Commercial equipment were used, such as a camera with a fish eye lens and lux meters, associated to the sizes of the canopies were tested and compared to another non-destructive method and with methods proposed in the literature. The association between production and the TLA estimated was also evaluated. The results showed that the commercial equipment, generally used in forestry, was not the best approach in coffee plants, and that the methods related to the size and lux values of the plants were the best alternatives to estimate the TLA of the coffee plant.


2013 ◽  
Vol 177 ◽  
pp. 110-116 ◽  
Author(s):  
Paulo C. Olivas ◽  
Steven F. Oberbauer ◽  
David B. Clark ◽  
Deborah A. Clark ◽  
Michael G. Ryan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document