scholarly journals Thermal convection of magneto compressible couple-stress fluid saturated in a porous medium with Hall current

2016 ◽  
Vol 21 (1) ◽  
pp. 83-93 ◽  
Author(s):  
C.B. Mehta ◽  
M. Singh ◽  
S. Kumar

Abstract An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.

2014 ◽  
Vol 62 (2) ◽  
pp. 357-362
Author(s):  
Gian C. Rana

Abstract In this paper, the effect of magnetic field on thermal convection in couple-stress fluid saturating a porous medium is considered. By applying linear stability theory and the normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pι the couple-stress parameter F and the Chandrasekher number Q, satisfy the inequality the result clearly establishes the stabilizing character of couple-stress parameter and magnetic field whereas destabilizing character of medium permeability.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.


2018 ◽  
Vol 15 (1) ◽  
pp. 148-155
Author(s):  
W. Stanly ◽  
R. Vasanthakumari

Purpose The purpose of this paper is used to study the combined effect of solute gradient and magnetic field on dusty couple-stress fluid in the presence of rotation through a porous medium. Design/methodology/approach The perturbation technique (experimental method) is applied in this study. Findings For the case of stationary convection, solute gradient and rotation have stabilizing effect, whereas destabilizing effect is found in dust particles in the system. Couple stress and medium permeability both have dual character to its stabilizing effect in the absence of magnetic field and rotation. Magnetic field succeeded in establishing a stabilizing effect in the absence of rotation. Originality/value The results are discussed by allowing one variable to vary and keeping other variables constant, as well as by drawing graphs.


2018 ◽  
Vol 23 (4) ◽  
pp. 963-976
Author(s):  
M. Singh

Abstract An investigation made on the effect of Hall currents on double-diffusive convection of a compressible synovial (couple-stress) fluid in the presence of a horizontal magnetic field through a porous layer is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, compressibility, magnetic field and porous layer is derived. For the stationary convection, a synovial fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. The stable-solute gradient, compressibility, and magnetic field have postponed the onset of convection, whereas Hall currents and medium permeability have not postponed the onset of convection, moreover, a synovial fluid has a dual character in the presence of Hall currents, whereas in the absence of Hall current in synovial fluid have postponed the onset of convection, which is in contrast in case of thermal convection couple-stress fluid with same effects. These analytic results are confirmed numerically and the effects of various parameters are depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field, porous medium and Hall currents which were non- existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.


2017 ◽  
Vol 22 (4) ◽  
pp. 981-994
Author(s):  
M. Singh

Abstract The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability characteristics. Sufficient conditions for the avoidance of overstability are also obtained.


Sign in / Sign up

Export Citation Format

Share Document