Fischer-Tropsch reaction mixture permeation through a silicalite-1 membrane reactor and its effect on the produced hydrocarbons distribution

Author(s):  
Abdelmalek Bellal ◽  
Lemnouer Chibane

AbstractThe quantification of the permeation of the Fischer-Tropsch reaction mixture through a silicalite-1 zeolite membrane in which is integrated in to fixed bed reactor was theoretically investigated. The approach is based on the prediction of the permeation parameters by using two different mechanisms including surface diffusion and gaseous diffusion. It was found that under our investigated conditions, the total permeation could be governed by surface diffusion model since the contribution of this mechanism is dominant versus the gaseous diffusion. Noteworthy, our results show that except for the selective gas permeation of carbon dioxide, the measuring factors of different permeates were proportional to the operating pressure. Hydrocarbons with low molecular weight diffuse greater than long-chain hydrocarbons. Furthermore, the high adsorbed molecules are more likely to be affected by the high processing temperature. It can be also highlighted that the permeate amounts has no important effect on the product distribution which is characterized by the olefins to paraffins ratios. So the assumption that considers the separation of CO 2 without assuming other components permeation is well supported.

2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis

2019 ◽  
Vol 268 ◽  
pp. 07001
Author(s):  
Zaky Al Fatony ◽  
Yosi Febriani ◽  
IGBN Makertihartha ◽  
Melia Laniwati Gunawan ◽  
Subagjo

Fischer-Tropsch synthesis (FTS) with cobalt-based catalyst has been developed to produce wax as a feedstock for further catalytic cracking. During catalyst preparation, NH4OH was added to the salt nitrate precursor to investigate the influence on catalyst acidity. Catalysts were prepared by the dry impregnation method and characterized by XRD, BET and NH3-TPD analyses. These properties were correlated with activity and selectivity of the catalyst. Activity tests showed CO and H2 conversion were in the range of 36.4% to 80.3% and 34.2% to 74.1% respectively. The cobalt particle size measurements exhibited 7.6-8.5 nm. The presence of weak acid sites on catalyst with large surface area and pore size is mainly responsible for obtaining high yields of C5+ hydrocarbon due to suppression of cracking properties. The product distribution showed a higher selectivity to C5+ in the range of 53.57% to 96.5%. In this study, FTS was evaluated by using fixed-bed reactor at 20 bar, 250 C, and WHSV of 1500 ml/g.cat/h-1.


2015 ◽  
Vol 659 ◽  
pp. 252-256
Author(s):  
Sudarat Chaiwatyothin ◽  
Wittawat Ratanathavorn ◽  
Tharapong Vitidsant ◽  
Prasert Reubroycharoen

Synthesis of nanoCu/ZnO catalyst for LPG production was prepared by ultrasonic spray pyrolysis (USP). Hollow spherical particles were obtained by USP technique using an aqueous solution of Cu (NO3)3.6H2O and Zn (NO3)3.3H2O with different concentration of 0.05, 0.1 and 0.5 molar under the pyrolysis temperatures of 600, 700 and 800°C. Mists of the solution were generated from the precursor solution by ultra sonic vibrators at frequency of ~1.7 MHz. The physicochemical properties of catalysts were characterized by X-ray diffraction, temperature-programmed reduction, scanning electron microscope, nitrogen adsorption-desorption, and energy dispersive X-ray spectrometer. The results showed that increasing in precursor concentration resulted in a large particle and particles size distributed in a range of 0.63-1.21 μm. Particles prepared at pyrolysis temperature 700°C exhibited homogeneous in size and shape compared to other temperature. The catalytic activity of nanoCu/ZnO-Pd-β catalysts was performed in a fixed-bed reactor for synthesizing LPG. The reaction took place at 260°C, 3.0 MPa, and the ratio of H2/CO = 2/1. All the products from the reactor were in gaseous state, and analyzed by on-line gas chromatography. The results showed that %CO conversion was high but decreased rapidly with increasing reaction time. Cu/ZnO catalyst prepared by co-precipitation gave higher %CO conversion than that prepared by ultrasonic spray pyrolysis. Moreover, hydrocarbon product distribution for Cu/ZnO catalyst produced at concentration 0.1 M 700°C by ultrasonic spray pyrolysis gave the highest LPG selectivity.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 15
Author(s):  
Elham Yaghoobpour ◽  
Yahya Zamani ◽  
Saeed Zarrinpashne ◽  
Akbar Zamaniyan

Promoters and their loading amount have crucial roles in cobalt Fischer – Tropsch catalysts. In this regard, the effects of vanadium oxide (V2O5) as a proposed promoter for Co catalyst supported on TiO2 have been investigated. Three catalysts with 0, 1, and 3 wt.% of V2O5 promoter loading are prepared by the incipient wetness impregnation method, and characterized by the BET surface area analyzer, XRD, H2-TPR, and TEM techniques. The fixed-bed reactor was employed for their evaluations. It was found that the catalyst containing 1 wt.% V2O5 has the best performance among the evaluated catalysts, demonstrating remarkable selectivity: 92 % C5+ and 5.7 % CH4, together with preserving the amount of CO conversion compared to the unpromoted catalyst. Furthermore, it is reported that the excess addition of V2O5 promoter (> 1 wt.%) in the introduced catalyst leads to the detrimental effect on the CO conversion and C5+ selectivity, mainly owing to diminished active sites by V2O5 loading.


2020 ◽  
Vol 343 ◽  
pp. 156-164
Author(s):  
Nikola Nikačević ◽  
Branislav Todić ◽  
Miloš Mandić ◽  
Menka Petkovska ◽  
Dragomir B. Bukur

Sign in / Sign up

Export Citation Format

Share Document