Topological based active and reactive power losses allocation method in both pool and bilateral-based electricity markets using power flow

Author(s):  
Alireza Ahmadimanesh ◽  
Mohsen Kalantar

Abstract In this paper, a new loss allocation method in restructured power systems is proposed. The method is appropriate for active and reactive loss allocations. This method can also be used for allocation in both bilateral and pool-based markets. The basic idea of this method is to calculate the contribution of each transaction on the system losses by deactivating it. The share of each transaction from total active and reactive losses of the network is estimated. Furthermore, we will discuss how the participants would affect the system’s loss. Are they supporting the network by reducing the total losses or not? This method is tested on different test systems, but due to space limitation, only the results of proposed method on IEEE 14, 24 and 118-bus test systems are presented and discussed. Furthermore, different parameters effects such as the location of slack bus and load condition are investigated. The proposed method has appropriate results in all conditions.

Computers ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 151
Author(s):  
David Lionel Bernal-Romero ◽  
Oscar Danilo Montoya ◽  
Andres Arias-Londoño

The problem of the optimal reactive power flow in transmission systems is addressed in this research from the point of view of combinatorial optimization. A discrete-continuous version of the Chu & Beasley genetic algorithm (CBGA) is proposed to model continuous variables such as voltage outputs in generators and reactive power injection in capacitor banks, as well as binary variables such as tap positions in transformers. The minimization of the total power losses is considered as the objective performance indicator. The main contribution in this research corresponds to the implementation of the CBGA in the DigSILENT Programming Language (DPL), which exploits the advantages of the power flow tool at a low computational effort. The solution of the optimal reactive power flow problem in power systems is a key task since the efficiency and secure operation of the whole electrical system depend on the adequate distribution of the reactive power in generators, transformers, shunt compensators, and transmission lines. To provide an efficient optimization tool for academics and power system operators, this paper selects the DigSILENT software, since this is widely used for power systems for industries and researchers. Numerical results in three IEEE test feeders composed of 6, 14, and 39 buses demonstrate the efficiency of the proposed CBGA in the DPL environment from DigSILENT to reduce the total grid power losses (between 21.17% to 37.62% of the benchmark case) considering four simulation scenarios regarding voltage regulation bounds and slack voltage outputs. In addition, the total processing times for the IEEE 6-, 14-, and 39-bus systems were 32.33 s, 49.45 s, and 138.88 s, which confirms the low computational effort of the optimization methods directly implemented in the DPL environment.


2014 ◽  
Vol 15 (6) ◽  
pp. 545-556 ◽  
Author(s):  
Juan M. Ramirez ◽  
Javier Vargas-Marín ◽  
Rosa E. Correa-Gutiérrez

Abstract The paper’s aim is to explore both active and reactive power losses minimization and voltage stability by a decentralized strategy. The approach assumes that the grid is split into sub-systems; each sub-system is in charge of its own optimal solution using equivalents for the neighbors, so that information exchange is not required. Schedule interchanges among sub-systems have been added as constraints into the optimal formulation. Once the individual solutions are available, the corresponding settings are allocated to the corresponding equipment and a full power flow study is carried out to assure the steady-state preservation. Results are exhibited on two test power systems.


Author(s):  
Himanshu Kumar Singh ◽  
S.C. Srivastava ◽  
Ashwani Kumar Sharma

One of the most important tasks of System Operator (SO) is to manage congestion as it threatens system security and may cause rise in electricity price resulting in market inefficiency. In corrective action congestion management schemes, it is crucial for SO to select the most sensitive generators to re-schedule their real and reactive powers and the loads to curtail in extreme congestion management. This paper proposed the selection of most sensitive generators and loads to re-schedule their generation and load curtailment based on the improved line flow sensitivity indices to manage congestion. The impact of slack bus on power flow sensitivity factors has been determined to encourage fair competition in the electricity markets. Effect of bilateral and multilateral transactions, and impact of multi-line congestion on congestion cost has also been studied. The generators’ reactive power bid has been modeled by a continuous differentiable tangent hyperbolic function. The proposed concept of congestion management has been tested on a practical 75-bus Indian system and IEEE-118-bus test system.


Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


2012 ◽  
Vol 3 (2) ◽  
pp. 147-156 ◽  
Author(s):  
R. A. El-Sehiemy ◽  
A. A. A. El Ela ◽  
A. M. M. Kinawy ◽  
M. T. Mouwafia

Abstract This paper presents optimal preventive control actions using ant colony optimization (ACO) algorithm to mitigate the occurrence of voltage collapse in stressed power systems. The proposed objective functions are: minimizing the transmission line losses as optimal reactive power dispatch (ORPD) problem, maximizing the preventive control actions by minimizing the voltage deviation of load buses with respect to the specified bus voltages and minimizing the reactive power generation at generation buses based on control variables under voltage collapse, control and dependent variable constraints using proposed sensitivity parameters of reactive power that dependent on a modification of Fast Decoupled Power Flow (FDPF) model. The proposed preventive actions are checked for different emergency conditions while all system constraints are kept within their permissible limits. The ACO algorithm has been applied to IEEE standard 30-bus test system. The results show the capability of the proposed ACO algorithm for preparing the maximal preventive control actions to remove different emergency effects.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2341
Author(s):  
Benjamin T. Gwynn ◽  
Raymond de Callafon

Load switches in power systems may cause oscillations in active and reactive power flow. Such oscillations can be damped by synthetic inertia provided by smart inverters providing power from DC sources such as photovoltaic or battery storage. However, AC current provided by inverters is inherently non-sinusoidal, making measurements of active and reactive power subject to harmonic distortion. As a result, transient effects due to load switching can be obscured by harmonic distortion. An RLC circuit serves as a reference load. The oscillation caused by switching in the load presents as a dual-sideband suppressed-carrier signal. The carrier frequency is available via voltage data but the phase is not. Given a group of candidate signals formed from phase voltages, an algorithm based on Costas Loop that can quickly quantify the phase difference between each candidate and carrier (thus identifying the best signal for demodulation) is presented. Algorithm functionality is demonstrated in the presence of inverter-induced distortion.


Sign in / Sign up

Export Citation Format

Share Document