Static Stress Concentrations due to Broken Fibres in Metal Matrix Composites with Intermediate Interfacial Bonding Strength

Author(s):  
Shojiro Ochiai ◽  
Kengo Abe ◽  
Kozo Osamura
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 738
Author(s):  
Xin Zhang ◽  
Shaoqing Wang

The relationship between point defects and mechanical properties has not been fully understood yet from a theoretical perspective. This study systematically investigated how the Stone–Wales (SW) defect, the single vacancy (SV), and the double vacancy (DV) affect the mechanical properties of graphene/aluminum composites. The interfacial bonding energies containing the SW and DV defects were about twice that of the pristine graphene. Surprisingly, the interfacial bonding energy of the composites with single vacancy was almost four times that of without defect in graphene. These results indicate that point defects enhance the interfacial bonding strength significantly and thus improve the mechanical properties of graphene/aluminum composites, especially the SV defect. The differential charge density elucidates that the formation of strong Al–C covalent bonds at the defects is the most fundamental reason for improving the mechanical properties of graphene/aluminum composites. The theoretical research results show the defective graphene as the reinforcing phase is more promising to be used in the metal matrix composites, which will provide a novel design guideline for graphene reinforced metal matrix composites. Furthermore, the sp3-hybridized C dangling bonds increase the chemical activity of the SV graphene, making it possible for the SV graphene/aluminum composites to be used in the catalysis field.


1997 ◽  
Vol 28 (4) ◽  
pp. 1099-1101 ◽  
Author(s):  
M. De Sanctis ◽  
R. Valentini ◽  
A. Solina

1988 ◽  
Vol 110 (1) ◽  
pp. 41-47 ◽  
Author(s):  
C. W. Lau ◽  
F. Delale

Novel hybrid-matrix composites with alternating metallic matrices of different plastic flow resistance offer excellent potential for a superior strength and toughness combination than traditional monomatrix composites. The local stress concentrations in this class of composites can be controlled by proper tailoring of the metal matrices. The free edge accentuated stress state which govern inter-matrix interfacial cracking in such hybrid metal matrix composites has been solved. Determined through asymptotic expansion and numerical methods, the local decohesion stress, σθθ, is found to be always positive for far field tensile loading. The power of the stress singularity is found to depend on the ratio of the plastic resistances of the two matrix metals. A larger difference in resistance to onset of plastic flow between the two matrix metals leads to stronger stress singularity. The work hardening behavior of the matrices also affects the power of the stress singularity. At the limit, the interfacial stress becomes nonsingular for non-workhardening matrices. Detailed results of both the power of the stress singularity, and its angular variation have been determined for a range of matrix combinations.


Sign in / Sign up

Export Citation Format

Share Document