In-situ Electrical Resistivity Measurements for Determining Formation Kinetics of the y' Phase in Nickel-based Wrousht Superalloys

Author(s):  
Gad I. Rosen ◽  
S. F. Dirnfeld ◽  
Menachem Bamberger ◽  
Bruno Prinz
2020 ◽  
Vol 825 ◽  
pp. 154108
Author(s):  
I.-E. Benrabah ◽  
G. Altinkurt ◽  
M. Fèvre ◽  
M. Dehmas ◽  
B. Denand ◽  
...  

1984 ◽  
Vol 33 (2) ◽  
pp. 77-82 ◽  
Author(s):  
J. P. Rivi�re ◽  
J. Delafond ◽  
C. Jaouen ◽  
A. Bellara ◽  
J. F. Dinhut

Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


2016 ◽  
Vol 18 (42) ◽  
pp. 29435-29446 ◽  
Author(s):  
Zhuoran Wang ◽  
Samir Elouatik ◽  
George P. Demopoulos

The in situ Raman monitored annealing method is developed in this work to provide real-time information on phase formation and crystallinity evolution of kesterite deposited on a TiO2 mesoscopic scaffold.


1994 ◽  
Vol 9 (2) ◽  
pp. 275-285 ◽  
Author(s):  
V. Milonopoulou ◽  
K.M. Forster ◽  
J.P. Formica ◽  
J. Kulik ◽  
J.T. Richardson ◽  
...  

The YBa2Cu3O7−x formation kinetics from a spray-roasted precursor powder containing Y2O3, BaCO3, and CuO was followed via in situ, time-resolved x-ray diffraction as a function of gas atmosphere and temperature. In inert atmospheres, BaCO3 and CuO form BaCu2O2 which subsequently reacts with Y2O3 to form YBa2Cu3O6. However, YBa2Cu3O6 decomposes at temperatures exceeding 725 °C with Y2BaCuO5 being one of the decomposition products. In oxidizing atmospheres, YBa2Cu3O7−x formation involves the BaCuO2. At high temperatures (800–840 °C), oxygen increases the yield of YBa2Cu3O6. A nuclei growth model assuming two-dimensional, diffusion-controlled growth with second-order nucleation rate fits the experimental data.


1983 ◽  
Vol 27 ◽  
Author(s):  
J. Grilhe ◽  
J.P. Riviere ◽  
J. Delafond ◽  
C. Jaouen

ABSTRACTEvaporated bilayers and multilayers of Fe and Al have been studied during ion beam mixing with Xe ions using in-situ electrical resistivity measurements. Experiments have been performed in the composition range 40 – 58 at.% Al and at both temperatures 77 K and 300 K. A semi-empirical model is proposed to explain the observed kinetics. At low doses, a square root dependence of the mixed volume fraction on dose is found at 77 K but not at 300 K. The results are discussed by comparison with the different models proposed for ion beam mixing.


2004 ◽  
Vol 120 ◽  
pp. 93-101
Author(s):  
J. Da Costa Teixeira ◽  
L. Héricher ◽  
B. Appolaire ◽  
E. Aeby-Gautier ◽  
G. Cailletaud ◽  
...  

The aim of this paper is to present recent experimental results and related simulation about the β → αGB + αWGB and → αWI transformations which occur in the Ti17 alloy during the thermal treatments following the heating in the β phase field. These phase transformations were experimentally studied under isothermal conditions in samples with negligible thermal gradients. The IT diagram was obtained, on the basis of electrical resistivity measurements and microstructural SEM observations. The kinetics of the phase transformation was further numerically simulated for continuous cooling on the basis of a formerly developed model giving the amount of each morphology (αWGB, αWI). Experimental and calculated results are compared.


1993 ◽  
Vol 34 (1) ◽  
pp. 7-12
Author(s):  
Jun’ichi Kozaki ◽  
Katsuki Hazama ◽  
Osamu Nittono ◽  
Kenji Hamamura

Sign in / Sign up

Export Citation Format

Share Document