The influence of multi-pass friction stir processing on microstructure and sliding wear behavior of Cu/ZrO2 surface composite

Author(s):  
Amin Rabiezadeh ◽  
Saman Ghafaei

Abstract In this study, copper/ZrO2 surface composites were produced using nano-particles via friction stir processing in order to enhance surface tribological properties. The present research aimed to generate copper matrix composites and analyze the effect of processing parameters on the evolving microstructure, microhardness, and wear-resistance behavior. It is worth noting that the processed composite layer had more homogeneity in the four-pass process. In comparison to the base metal and non-powder samples, it had higher mechanical characteristics. Based on the results, the highest recorded hardness, approximately 288 HV, was found in a four-pass state with powder. Remarkably, it showed a double peak compared to 80 HV in the base metal. The lowest friction coefficient of four-passes with the powder sample was about 0.47, which showed a significant efficiency in comparison to the friction coefficient of base metal that was about 0.81.

2011 ◽  
Vol 391-392 ◽  
pp. 524-529 ◽  
Author(s):  
Wen Liang Chen ◽  
Chun Ping Huang ◽  
Li Ming Ke

Carbon nanotubes(CNTs) reinforced copper matrix composites were successfully produced by Friction Stir Processing (FSP). The effect of applying multiple FSP passes on the forming of composites was studied, the microstructure, microhardness and conductivity of the good forming composite were analyzed. The experimental results showed that CNTs uniformly distributed and good forming composite can be obtained by three FSP passes. Compared to the parent material, the grain size of the composite has significantly refined, and the microhardness of the composite has also greatly improved, but the conductivity of the composite has a small decrease.


2012 ◽  
Vol 27 (12) ◽  
pp. 1419-1423 ◽  
Author(s):  
Adel Mahmood Hassan ◽  
Mohammed Almomani ◽  
Tarek Qasim ◽  
Ahmed Ghaithan

2018 ◽  
Vol 916 ◽  
pp. 239-243 ◽  
Author(s):  
Ali Esmaeili ◽  
Abdel Magid S. Hamouda

Friction stir processing (FSP) is a thermos-mechanical process for modifying the microstructural and material properties of metals. FSP also can be used for mechanical alloying and producing metal matrix composites. Due to creation of longitudinal cracks and tunneling cavities throughout the processing path, FSP of AZ91 is difficult and also sensitive to processing temperature. In this study, the effect of processing parameters such as the traverse and rotational speeds and the dimension of the tool pin on the temperature history experienced by material were investigated. Additionally, a minimum temperature required to produce a defect-free specimen was presented.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 638
Author(s):  
Abdulla I. Almazrouee ◽  
Khaled J. Al-Fadhalah ◽  
Saleh N. Alhajeri

Friction stir processing (FSP) is a green fabrication technique that has been effectively adopted in various engineering applications. One of the promising advantages of FSP is its applicability in the development of surface composites. In the current work, a new approach for direct friction stir processing is considered for the surface fabrication of aluminum-based composites reinforced with micro-sized silicon carbide particles (SiC), eliminating the prolonged preprocessing stages of preparing the sample and filling the holes of grooves. The proposed design of the FSP tool consists of two parts: an inner-threaded hollow cylindrical body; and a pin-less hollow shoulder. The design is examined with respect to three important tool processing parameters: the tilt angle of the tool, the tool’s dispersing hole, and the tool’s plunge depth. The current study shows that the use of a dispersing hole with a diameter of 6 mm of and a plunge depth of 0.6 mm, in combination with a tilting angle of 7°, results in sufficient mixing of the enforcement particles in the aluminum matrix, while still maintaining uniformity in the thickness of the composite layer. Metallographic examination of the Al/SiC surface composite demonstrates a uniform distribution of the Si particles and excellent adherence to the aluminum substrate. Microhardness measurements also show a remarkable increase, from 38.5 Hv at the base metal to a maximum value of 78 Hv in the processed matrix in the surface composites layer. The effect of the processing parameters was also studied, and its consequences with respect to the surface composites are discussed.


Sign in / Sign up

Export Citation Format

Share Document