scholarly journals Design of the state feedback-based feed-forward controller asymptotically stabilizing the double-pendulum-type overhead cranes with time-varying hoisting rope length

Author(s):  
Robert Vrabel

Abstract In this paper we focus our attention on the design of the feedback-based feed-forward controller asymptotically stabilizing the double-pendulum-type (D-P-T) crane system with the time-varying rope length in the desired end position of payload (the origin of the coordinate system). In principle, two cases are considered, in the first case, the sway angle of payload is uncontrolled and second case, when the sway angle of payload is controlled by an external force. Precise mathematical modeling in the framework of Lagrange formalism without the traditional neglect of the important structural parameters of the D-P-T crane system and numerical simulation in the Matlab environment indicate the substantial reduction of the transportation time to the desired end position.

2020 ◽  
Vol 53 (2) ◽  
pp. 1331-1336
Author(s):  
Sven Pfeiffer ◽  
Annika Eichler ◽  
Holger Schlarb

Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


2012 ◽  
Vol 461 ◽  
pp. 763-767
Author(s):  
Li Fu Wang ◽  
Zhi Kong ◽  
Xin Gang Wang ◽  
Zhao Xia Wu

In this paper, following the state-feedback stabilization for time-varying systems proposed by Wolovich, a controller is designed for the overhead cranes with a linearized parameter-varying model. The resulting closed-loop system is equivalent, via a Lyapunov transformation, to a stable time-invariant system of assigned eigenvalues. The simulation results show the validity of this method.


Author(s):  
Xiangyu You ◽  
Ping Guo

A novel and simple near-field electrospinning (NFES) method has been developed to fabricate wavy or helical nanofibrous arrays. By alternating the electrostatic signals applied on auxiliary-electrodes (AE), the structural parameters of deposited patterns can be actively controlled. Compared with the traditional electrospinning methods based on the bending and buckling effects or collector movement, the proposed method shows advantages in the controllability, accuracy, and minimal feature size. Forces operating on the electrospinning jet and the time-varying electric field distribution were analyzed to explain the kinematics of the jet. Nanoscale wavy and helical patterns with various structural parameters were fabricated. The effects of experimental process parameters on structural parameters of deposited patterns were analyzed to demonstrate the controllability of our method in fabricating wavy or helical nanofibrous structures. It is envisioned that this method will benefit the applications in the field of photovoltaic devices, sensors, transducers, resonators, and stretchable electronics.


Sign in / Sign up

Export Citation Format

Share Document