scholarly journals Development of NADPH-producing pathways in rat heart

1980 ◽  
Vol 186 (3) ◽  
pp. 799-803 ◽  
Author(s):  
A Andrés ◽  
J Satrústegui ◽  
A Machado

The behaviours of the principal NADPH-producing enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, cytoplasmic and mitochondrial ‘malic’ enzyme and NAPD+-dependent isocitrate dehydrogenase) were studied during the development of rat heart and compared with those in brain and liver. 1. The enzymes belonging to the pentose phosphate pathway exhibit lower activities in heart than in other tissues throughout development. 2. The pattern of induction of heart cytoplasmic and mitochondrial ‘malic’ enzymes does not parallel that found in liver. Heart mitochondrial enzyme is slowly induced from birth onwards. 3. NADP+-dependent isocitrate dehydrogenase has similar activities in all tissues in 18-day foetuses. 4. Heart mitochondrial NADP+-dependent isocitrate dehydrogenase is greatly induced in the adult, where it attains a 10-fold higher activity than in liver. 5. The physiological functions of mitochondrial ‘malic’ enzyme and NADP+-dependent isocitrate dehydrogenase are discussed.

2017 ◽  
Vol 10 (4) ◽  
pp. 148-154 ◽  
Author(s):  
Nuray Nuriye Ulusu ◽  
Müslüm Gök ◽  
Arzu Ayşe Sayin Şakul ◽  
Nuray Ari ◽  
Milan Stefek ◽  
...  

Abstract The pentose phosphate pathway and glutathione-associated metabolism are the main antioxidant cellular defense systems. This study investigated the effects of the powerful antioxidant SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b] indolinium dichloride) on pentose phosphate pathway (PPP) and glutathione-dependent enzyme activities in aged diabetic and aged matched control rats. Diabetes was induced by streptozotocin injection in rats aged 13-15 months. Diabetic and control rats were divided into two subgroups, one untreated and one treated with SMe1EC2 (10 mg/kg/day, orally) for 4 months. SMe1EC2 ameliorated body weight loss, but not hyperglycemia of aged diabetic rats. Diabetes resulted in decreased glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD) and glutathione-S-transferase (GST), yet in unchanged glutathione reductase (GR) in the liver of aged diabetic rats. In the liver of the aged control rats, SMe1EC2 did not affect G6PDH, 6PGDH and GR, but it inhibited GST. SMe1EC2 also failed to affect diabetes-induced decline in 6PGDH, it ameliorated G6PDH but produced further decline in GST in the liver of aged diabetic rats. In the kidney of aged rats, G6PDH and GST were found to be comparable among the groups, but diabetes up-regulated 6PGDH and GR; these alterations were prevented by SMe1EC2. In the heart of aged diabetic rats, while GST remained unchanged, the recorded increase in G6PD, 6PGD, GR was prevented by SMe1EC2. Furthermore, an unchanged GR and remarkable increases in G6PD, 6PGD and GST were found in the lung of the aged diabetic group. These alterations were completely prevented by SMe1EC2. The results suggest that in aged rats SMe1EC2 can ameliorate the response of the kidney, heart and lung but not that of the liver against diabetes-induced glucotoxicity by interfering with the activity of redox network enzymes.


1967 ◽  
Vol 22 (11) ◽  
pp. 1200-1215 ◽  
Author(s):  
U. Heber ◽  
U. W. Hallier ◽  
M. A. Hudson ◽  
B. von der Groeben ◽  
R. Ernst ◽  
...  

1. The interrelationship of metabolic activities in chloroplasts and cytoplasm of leaf cells of spinach, sugar beet and Elodea has been investigated. Different methods have been adopted to study the intracellular localization of enzymes and the flow of phosphorylated intermediates across the chloroplast membrane. The flow of substrates was investigated by determining the rates of the conversion of substrates added to aqueously isolated chloroplasts, prior to and after destruction of the outer chloroplast membrane. The observed differences yielded information as to whether a substrate could traverse the chloroplast membrane.Two methods mere used to investigate the localization of enzymes :a) The percentage distribution of photosynthetic and respiratory enzymes in chloroplasts and cytoplasm was calculated from data on enzyme activities in non-aqueous cell fractions.b) Low levels of enzymes in chloroplasts in the presence of high cytoplasmatic levels were detected by assaying enzyme activities in preparations of aqueously isolated chloroplasts prior to and after ultrasonic destruction of the outer chloroplast membrane.2. If chloroplasts are isolated in aqueous sucrose buffer, their outer membranes act as an efficient barrier against the penetration of NADP, RuDP, GAP and, in some but not all experiments, of FMP and GMP. PGA, DHAP and, probably to a lesser extent, aspartate, ɑ-ketoglutarate, oxaloacetate and FDP can traverse this membrane. Chloroplast membranes are significantly altered when isolated in NaCI-buffer systems and do not correspond to the in vivo situation.3. The conversion of Ri-5-P to RuDP occurs exclusively or nearly exclusively in the chloroplasts indicating that phosphoribulokinase and/or ribosephosphate isomerase are located only there.4. The conversion of Ri-5-P to GAP and SuMP, which is catalyzed by the enzymes ribosephosphate isomerase, xylulosephosphate epimerase and transketolase, proceeds likewise only or at least predominantly in the chloroplasts and not, or only to a small extent, in the cytoplasm.5. The major parts of glucose-6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase reside in the cytoplasm. However, a small, but significant, level of these enzymes is to be found also in the chloroplasts. Hexokinase and transaldolase are also present there. Pyruvate kinase and phosphofructokinase appear to be absent from chloroplasts.6. Since, with the presence of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, hexokinase, transaldolase and enzymes of the Calvin cycle, the enzymic machinery of the oxidative pentose phosphate pathway is complete in the chloroplasts, the results suggest that chloroplasts are engaged in the oxidative decomposition of carbohydrates.7. In the dark the oxidative pentose phosphate pathway requires the control of NADPH formation and the transfer of hydrogen across the chloroplast membrane.8. The available data on the intracellular localization of enzymes and on the kinetics of the distribution of labelled intermediates show that the photosynthetic carbon cycle operates exclusively within the chloroplasts. There is nothing to suggest that enzymes of chloroplasts and cytoplasm cooperate in the cyclic regeneration of the carbon acceptor molecule. However, the existence of phosphorylated transport metabolites suggests that secondary reactions of photosynthesis such as sucrose and amino acid synthesis, which proceed, at least in part, outside the chloroplasts, are directly linked with chloroplastic reactions by activated (phosphorylated) intermediates.


1995 ◽  
Vol 310 (2) ◽  
pp. 709-714 ◽  
Author(s):  
L F B P Costa Rosa ◽  
R Curi ◽  
C Murphy ◽  
P Newsholme

Adrenaline has recently been shown to stimulate both glucose metabolism and H2O2 release by macrophages but the activity of the key pentose phosphate pathway enzyme, glucose-6-phosphate dehydrogenase (which generates the NADPH crucial for the reduction of molecular oxygen), was reduced under these conditions [Costa Rosa, Safi, Cury and Curi (1992) Biochem. Pharmacol. 44, 2235-2241]. We report here that adrenaline activates another NADPH-producing enzyme, NADP(+)-dependent ‘malic’ enzyme, while also inhibiting glucose-6-phosphate dehydrogenase, via cyclic AMP-dependent protein kinase (PKA) activation. Regulation of glucose-6-phosphate dehydrogenase activity by PKA has not been reported elsewhere. The sparing of some glucose from pentose phosphate pathway consumption may be important in the provision of glycerol 3-phosphate which in the macrophage may be required for new phospholipid synthesis. Glutamine oxidation was also stimulated by adrenaline thus providing increased substrate (malate) for NADP(+)-dependent ‘malic’ enzyme and therefore shifting some of the burden of NADPH production from glucose to glutamine metabolism. We also report a novel synergistic effect of adrenaline and some bacterial products and/or gamma-interferon in stimulating secretory and metabolic pathways in macrophages which may be a part of a larger network of signals that lead to enhanced macrophage activity.


1985 ◽  
Vol 52 (4) ◽  
pp. 501-506 ◽  
Author(s):  
Murray R. Grigor ◽  
Peter E. Hartmann

SUMMARYThe activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase, malic enzyme, lactate dehydrogenase and malate dehydrogenase have been determined in secreted milk from sows, rats and rabbits. Within each species, although there was considerable variation in the absolute activities of these enzymes, the relative activities were similar to those observed for, or previously published for mammary homogenates. The only exception was milk glucose 6-phosphate dehydrogenase which tended to lose activity upon prolonged storage in the mammary gland. These results suggest that the pattern of milk enzymes can be an accurate reflection of that occurring in the mammary gland.


1970 ◽  
Vol 119 (1) ◽  
pp. 5-15 ◽  
Author(s):  
S. J. H. Ashcroft ◽  
P. J. Randle

1. Glucose-phosphorylating and glucose 6-phosphatase activities, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP+-linked isocitrate dehydrogenase, `malic' enzyme and pyruvate carboxylase were assayed in homogenates of normal mouse islets. 2. Two glucose-phosphorylating activities were detected; the major activity had Km 0.075mm for glucose and was inhibited by glucose 6-phosphate (non-competitive with glucose) and mannoheptulose (competitive with glucose). The other (minor) activity had a high Km for glucose (mean value 16mm) and was apparently not inhibited by glucose 6-phosphate. 3. Glucose 6-phosphatase activity was present in amounts comparable with the total glucose-phosphorylating activity, with Km 1mm for glucose 6-phosphate. Glucose was an inhibitor and the inhibition showed mixed kinetics. No inhibition of glucose 6-phosphate hydrolysis was observed with mannose, citrate or tolbutamide. The inhibition by glucose was not reversed by mannoheptulose. 4. 6-Phosphogluconate dehydrogenase had Km values of 2.5 and 21μm for NADP+ and 6-phosphogluconate respectively. 5. Glucose 6-phosphate dehydrogenase had Km values of 4 and 22μm for NADP+ and glucose 6-phosphate. The Km for glucose 6-phosphate was considerably below the intra-islet concentration of glucose 6-phosphate at physiological extracellular glucose concentrations. The enzyme had no apparent requirement for cations. Of a number of possible modifiers of glucose 6-phosphate dehydrogenase, only NADPH was inhibitory. The inhibition by NADPH was competitive with NADP+ and apparently mixed with respect to glucose 6-phosphate. 6. NADP+–isocitrate dehydrogenase was present but the islet homogenate contained little, if any, `malic' enzyme. The presence of pyruvate carboxylase was also demonstrated. 7. The results obtained are discussed with reference to glucose phosphorylation and glucose 6-phosphate oxidation in the intact mouse islet, and the possible nature of the β-cell glucoreceptor mechanism.


1992 ◽  
Vol 2 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Johan C. Pretorius ◽  
J. G. Chris Small

AbstractSubmerging Phaseolus vulgaris cv. Top Crop seeds in air-saturated water for 16 h markedly depresses subsequent germination. This is termed soaking injury. Soaking injury does not occur in seeds soaked in CO2-saturated water. Previous studies have shown that soaking injury can be alleviated by drying seeds or removing seed coats. Submergence therefore leads to a situation in bean seeds which is similar to secondary dormancy.As with dormant seeds, C6/C1 ratios of embryonic axes of seeds soaked in air-saturated water remained high (0.8–1.0) during and after soaking. This was paralleled by low activities of glucose-6-phosphate dehydrogenase (EC.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). In axes of seeds soaked in CO2-saturated water and in unsoaked seeds C6/C1 ratios declined steadily during soaking/imbibition and reached values of around 0.3 after germination. Slight increases ofglucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities occurred in the pre-germination phase. This was followed by a massive increase after radicle emergence. Synthesis of the plastid isoenzymes was a post-germinative event.It appears that soaking injury depresses protein synthesis. Lack of oxidative pentose phosphate pathway activity appears to be a causative factor in soaking injury.


1990 ◽  
Vol 115 (6) ◽  
pp. 987-990 ◽  
Author(s):  
Hening Hu ◽  
Gary A. Couvillon

The activities of catalase and of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), the two key enzymes in the pentose phosphate pathway (ppp), were measured in the seeds of Prunus persica (L.) Batsch var. nectarina Maxim `Nectarine 7'. The seeds were subjected to three imbibition treatments: 1) continuous 24C; 2) continuous 4C; and 3) application of thiourea (TU)/gibberellic acid (GA) at various concentrations to seed held at 24C then subsequently chilled at 4C. Treatments of continuous 24 or 4C indicated that catalase, G6PDH, and 6PGDH exhibited significant activity increases only when the seeds obtained germination potential, which occurred in the seeds chilled for 7 weeks at 4C. Seeds held at 24C did not germinate and showed little change with time in G6PDH and 6PGDH activity. There was only a slight increase in catalase activity beginning 3 weeks following treatment initiation and a decrease in activity following 13 weeks of treatment. Thiourea treatment resulted in an inhibition of catalase activity and a stimulation of G6PDH, but had no effect on 6PGDH activity. However, no correlation between enzymic activity and seed germination was found. The results strongly questioned the role of the ppp and catalase activity in dormancy control as previously hypothesized.


Weed Science ◽  
1978 ◽  
Vol 26 (4) ◽  
pp. 349-351 ◽  
Author(s):  
E. W. Smith ◽  
B. J. Reger ◽  
G. H. Egley

Key metabolic enzymes and germination were studied in developing and mature, dormant and nondormant prickly sida(Sida spinosaL.) seeds. Isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, fructose-1,6-diphosphatase, and phosphofructokinase activities were determined in developing and mature prickly sida seeds. Developing seeds less than 7 days after anthesis and at 17 days or greater after anthesis were unable to germinate. The 7-day-old seeds lacked all but fructose-1,6-diphosphatase activity. The 17-day-old seeds demonstrated all enzyme activities but failed to germinate because dehydration had occurred and seeds were unable to imbibe sufficient water without an afterripening period. Comparison of enzyme activities of dormant and nondormant seeds on incubation showed that only glucose-6-phosphate dehydrogenase was considerably different within the first 8 h of incubation. Nondormant seeds had considerable glucose-6-phosphate dehydrogenase activity before germination (radical protrusion at 8 h), suggesting an active pentose phosphate pathway.


Sign in / Sign up

Export Citation Format

Share Document