Vertical Electron Affinity

2016 ◽  
Author(s):  
Vladimir I. Minkin
2012 ◽  
Vol 512-515 ◽  
pp. 2059-2063 ◽  
Author(s):  
Hui Yi Pei ◽  
Ai Fang Gao

The electron affinities of the CnH2n+1SS/CnH2n+1SS- (n=1-5) species have been determined using four different density functional or hybrid Hartree-Fock density functional methods. The basis set used in this work is of double- plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The most reliable adiabatic electron affinities, obtained at the DZP++ BP86 level of theory, are 1.794 eV (for CH3SS), 1.777 eV (for C2H5SS), 1.778 eV (a) and 1.809 eV (b) for the two isomers of C3H7SS, 1.782 eV (a), 1.825 eV (b) and 1.778 eV (c) for the three isomers of C4H9SS, and 1.784 eV (a), 1.875 eV (b), 1.805 eV (c) and 1.835 eV (d) for the three isomers of C5H11SS, respectively.


2019 ◽  
Vol 43 (12) ◽  
pp. 4959-4964 ◽  
Author(s):  
Ambrish Kumar Srivastava

A new series of non-metallic superalkali cations, NnH3n+1+ by using ammonium (NH4+) cations, possessing vertical electron affinity (EAv), 4.39 eV for n = 1 to 2.39 eV for n = 5 has been proposed. This series can be continued for obtaining new superalkali cations, for instance N9H28+ with an EAv of 1.84 eV. The EAv of NnH3n+1+ cations is governed by the electron localization on the central N-atom. The EAv of NnH3n+1+ cations decays exponentially with an increase in n.


2010 ◽  
Vol 8 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Boleslaw Karwowski

AbstractOxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it was decided to present, for the first time, the electron affinity, ionization potential of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The zero-point vibrational corrected adiabatic electron affinity (AEA) and adiabatic ionization potential (AIP) were calculated. Additionally the vertical electron affinity (VEA), vertical detachment energy (VDE) and vertical ionization potential were taken into consideration. AEA in eV (gaseous/aqueous phase) are as follows: 0.3/1.81 (5′R)cdA, 0.13/1.76 (5′S)cdA, 0.17/1.49 (5′R)cdG, 0.14/1.53 (5′S)cdG and AIP followed the order 7.43/5.59(5′S)cdG, 7.49/5.60(5′R)cdG, 7.77/5.97(5′R)cdA, 7.84/5.93(5′S)cdA. The obtained AIPs were found to be lower than that for corresponding natural nucleosides. Therefore, even though the 5′,8-cyclopurine-2′-deoxynucleoside level in a cell was judged as low, they can play an important role in the stability, replication and transcription of genes.


2004 ◽  
Vol 110 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Teodorico C. Ramalho ◽  
Ricardo Bicca de Alencastro ◽  
Mauro Aquiles La-Scalea ◽  
José Daniel Figueroa-Villar

Sign in / Sign up

Export Citation Format

Share Document