vertical electron affinity
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 63 (11) ◽  
pp. 2-6
Author(s):  
Thuy Hang Nguyen ◽  
◽  
Thi Be Pham ◽  
Thi Kim Giang Nguyen ◽  
Hoang Hao Nguyen ◽  
...  

Extended tight-binding quantum chemical method (GFN2-xTB) was performed to investigate the adsorption of 2,4-dichlorophenoxylacetic acid (2,4-D) on activated carbon (AC) and AC modified by Fe or Ag (AC-M). Electronic properties of the studied systems were estimated via vertical ionisation potential, vertical electron affinity, and global electrophilicity index. Adsorption energy, population analysis, and geometrical parameters were calculated to clarify the adsorption ability of AC and AC-M. The results indicated that the introduction of metal atoms to AC substantially enhanced the adsorption ability for 2,4-D. The adsorption mechanism changed from physical adsorption (on AC) to chemisorption (on AC-M). The influence of different solvents (water, methanol, and acetonitrile) on the adsorption process was studied via an Analytical linearized Poisson-Boltzmann algorithm.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5058
Author(s):  
Maciej Spiegel ◽  
Andrzej Gamian ◽  
Zbigniew Sroka

Polyphenolic compounds are now widely studied using computational chemistry approaches, the most popular of which is Density Functional Theory. To ease this process, it is critical to identify the optimal level of theory in terms of both accuracy and resource usage—a challenge we tackle in this study. Eleven DFT functionals with varied Hartree–Fock exchange values, both global and range-separated hybrids, were combined with 14 differently augmented basis sets to calculate the reactivity indices of caffeic acid, a phenolic acid representative, and compare them to experimental data or a high-level of theory outcome. Aside from the main course, a validation of the widely used Janak’s theorem in the establishment of vertical ionization potential and vertical electron affinity was evaluated. To investigate what influences the values of the properties under consideration, linear regression models were developed and thoroughly discussed. The results were utilized to compute the scores, which let us determine the best and worst combinations and make broad suggestions on the final option. The study demonstrates that M06–2X/6–311G(d,p) is the best fit for such research, and, curiously, it is not necessarily essential to include a diffuse function to produce satisfactory results.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1783
Author(s):  
Hao-Ran Wang ◽  
Chong Zhang ◽  
Bing-Cheng Hu ◽  
Xue-Hai Ju

Energetic salts based on pentazolate anion (cyclo-N5−) have attracted much attention due to their high nitrogen contents. However, it is an enormous challenge to efficiently screen out an appropriate cation that can match well with cyclo-N5−. The vertical electron affinity (VEA) of the cations and vertical ionization potential (VIP) of the anions for 135 energetic salts and some cyclo-N5− salts were calculated by the density functional theory (DFT). The magnitudes of VEA and VIP, and their matchability were analyzed. The results based on the calculations at the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVTZ levels indicate that there is an excellent compatibility between cyclo-N5− and cation when the difference between the VEA of cation and the VIP of cyclo-N5− anion is −2.8 to −1.0 eV. The densities of the salts were predicted by the DFT method. Relationship between the calculated density and the experimental density was established as ρExpt = 1.111ρcal − 0.06067 with a correlation coefficient of 0.905. This regression equation could be in turn used to calibrate the calculated density of the cyclo-N5− energetic salts accurately. This work provides a favorable way to explore the energetic salts with excellent performance based on cyclo-N5−.


2019 ◽  
Vol 43 (12) ◽  
pp. 4959-4964 ◽  
Author(s):  
Ambrish Kumar Srivastava

A new series of non-metallic superalkali cations, NnH3n+1+ by using ammonium (NH4+) cations, possessing vertical electron affinity (EAv), 4.39 eV for n = 1 to 2.39 eV for n = 5 has been proposed. This series can be continued for obtaining new superalkali cations, for instance N9H28+ with an EAv of 1.84 eV. The EAv of NnH3n+1+ cations is governed by the electron localization on the central N-atom. The EAv of NnH3n+1+ cations decays exponentially with an increase in n.


2018 ◽  
Vol 54 (2C) ◽  
pp. 306 ◽  
Author(s):  
Truc Xuyen Nguyen Phan

Antioxidant activity of 9 isothiocyanate derivatives (−N=C=S) extracted from Broccolisprouts (Brassica oleracea L.) has been investigated using density functional theory (DFT) –based computational methods. Through the hydrogen atom transfer (HAT) and single electrontransfer (SET) mechanisms, three thermodynamic parameters including bond dissociationenthalpy (BDE), vertical ionization energy (IE), and vertical electron affinity (EA) werecalculated in the gas phase using B3LYP/6-311++G(3df,3p)//B3LYP/6-311G(d,p) modelchemistry. As a result, the isothiocyanate (ITC) shows potential antioxidant activity via HATmechanism. The most potential antioxidant is 3-isothiocyanato pro-1-en (3ITCP) withBDE(C−H) of 72.9 kcal/mol. The SET mechanism is not dominant in case of the studied ITCs.Moreover, the radicals formed H• removal had more reactive and less stable than the intialneutral compounds with lower IE, higher EA and ω.


2017 ◽  
Vol 31 (12) ◽  
pp. 1750092 ◽  
Author(s):  
Shobhna Dhiman ◽  
Ranjan Kumar ◽  
Keya Dharamvir

In the present paper, we have done a systematic study of structural and electronic properties of endohedrally doped C[Formula: see text] with Al and Ga atoms using density functional theory (DFT) with the help of Spanish initiative for electronic simulation with thousands of atoms (SIESTA) package in the generalized gradient approximation (GGA). The parameters calculated are binding energy/dopant atom, vertical ionization potential (VIP), vertical electron affinity (VEA), HOMO–LUMO gap and charge transfer. The stabilized ground state structures of Al[Formula: see text]@C[Formula: see text] ([Formula: see text]–10) and Ga[Formula: see text]@C[Formula: see text] ([Formula: see text]–10) show that a maximum of nine Al or Ga atoms can be encapsulated in C[Formula: see text] without distorting the cage significantly. Mulliken charge analysis shows an electron transfer from the metal dopant to the cage surface, except for Al[Formula: see text] ([Formula: see text]–10). The endohedral metal clusters adopt a more compact shape when inside C[Formula: see text], compared to its free-state configuration and its symmetry. The study of HOMO–LUMO gap reveals that the gap decreases with the increase in number of dopant atoms inside C[Formula: see text].


2013 ◽  
Vol 12 (07) ◽  
pp. 1350063 ◽  
Author(s):  
CHUNMEI TANG ◽  
WEIHUA ZHU ◽  
AIMEI ZHANG ◽  
MINGYI LIU ◽  
KAIXIAO ZHANG

The fulerine- Ni @ Ge 12 H 12 structure, which composes of four pentagons and four rhombi and is like a fullerene, has a closed-shell electronic structure, the largest HOMO–LUMO energy gap, the highest vertical ionization potential, and the lowest vertical electron affinity. All of these properties are characteristic of a magic cluster, therefore, we strongly suggest fulerine- Ni @ Ge 12 H 12 should be a magic cluster and promising as building blocks in developing cluster-assembled nanomaterials. This can be interpreted by the weak interaction between Ni and the cage together with the transference of two electrons from the 4s orbital to the 3d orbital of Ni . The magnetic moment of fulerine- M @ Ge 12 H 12( M = Sc – Ni ) varies from 0 to 3 μB, implying they have potential applications in developing new nanomaterials with tunable magnetic properties. The calculated TDDFT optical properties of fulerine- M @ Ge 12 H 12( M = Sc – Ni ) can be tuned broadly in the ultraviolet–visible region. This is very important for optoelectronic applications.


2013 ◽  
Vol 11 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Boleslaw Karwowski

AbstractOxidatively generated damage to DNA frequently appears in the human genome as the effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents such as ionization radiation. In this paper, for the first time, the electronic properties of nucleoside pairs containing 5′,8-cyclo-2′-deoxyadenosine (cdA) in their 5′R and 5′S diastereomeric forms (cdA(R)::T and cdA(S)::T) as the simplest model of ds-DNA have been discussed. The following values of the selected electronic parameters, measured in eV, were found for cdA(R)::T, cdA(S)::T, and dA::T, respectively, adiabatic/vertical electron affinity: 0.39/0.24, 0.35/0.18, 0.33/0.21; and adiabatic/vertical ionization potential: 7.27/7.50, 7.7.25/7.49, 7.03/7.27. Moreover, based on the results of the relaxation energy, the presence of cdA(S)::T should provide the highest barrier for electron transfer in ds-DNA. Analyses of hydrogen bond length deviations reveal that the formation of cationic forms results in higher elongation than that of anionic forms. Moreover, during the electron attachment or detachment for the investigated cdA(R)::T, cdA(S)::T, and dA::T nucleoside pairs, the same scheme of changes in hydrogen bond length was noted.


Sign in / Sign up

Export Citation Format

Share Document