Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Anil K. Bera ◽  
Antonio F. Galvao ◽  
Gabriel V. Montes-Rojas ◽  
Sung Y. Park

AbstractThis paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.

2013 ◽  
Vol 5 (2) ◽  
pp. 133-162 ◽  
Author(s):  
Eric Hillebrand ◽  
Marcelo C. Medeiros ◽  
Junyue Xu

Abstract: We derive asymptotic properties of the quasi-maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual -rate and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data.


2018 ◽  
Vol 33 (1) ◽  
pp. 31-43
Author(s):  
Bol A. M. Atem ◽  
Suleman Nasiru ◽  
Kwara Nantomah

Abstract This article studies the properties of the Topp–Leone linear exponential distribution. The parameters of the new model are estimated using maximum likelihood estimation, and simulation studies are performed to examine the finite sample properties of the parameters. An application of the model is demonstrated using a real data set. Finally, a bivariate extension of the model is proposed.


2001 ◽  
Vol 9 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Ethan Katz

Fixed-effects logit models can be useful in panel data analysis, when N units have been observed for T time periods. There are two main estimators for such models: unconditional maximum likelihood and conditional maximum likelihood. Judged on asymptotic properties, the conditional estimator is superior. However, the unconditional estimator holds several practical advantages, and therefore I sought to determine whether its use could be justified on the basis of finite-sample properties. In a series of Monte Carlo experiments for T < 20, I found a negligible amount of bias in both estimators when T ≥ 16, suggesting that a researcher can safely use either estimator under such conditions. When T < 16, the conditional estimator continued to have a very small amount of bias, but the unconditional estimator developed more bias as T decreased.


2009 ◽  
Vol 25 (1) ◽  
pp. 117-161 ◽  
Author(s):  
Marcelo C. Medeiros ◽  
Alvaro Veiga

In this paper a flexible multiple regime GARCH(1,1)-type model is developed to describe the sign and size asymmetries and intermittent dynamics in financial volatility. The results of the paper are important to other nonlinear GARCH models. The proposed model nests some of the previous specifications found in the literature and has the following advantages. First, contrary to most of the previous models, more than two limiting regimes are possible, and the number of regimes is determined by a simple sequence of tests that circumvents identification problems that are usually found in nonlinear time series models. The second advantage is that the novel stationarity restriction on the parameters is relatively weak, thereby allowing for rich dynamics. It is shown that the model may have explosive regimes but can still be strictly stationary and ergodic. A simulation experiment shows that the proposed model can generate series with high kurtosis and low first-order autocorrelation of the squared observations and exhibit the so-called Taylor effect, even with Gaussian errors. Estimation of the parameters is addressed, and the asymptotic properties of the quasi-maximum likelihood estimator are derived under weak conditions. A Monte-Carlo experiment is designed to evaluate the finite-sample properties of the sequence of tests. Empirical examples are also considered.


Author(s):  
Sudipta Das ◽  
Anup Dewanji ◽  
Subrata Kundu

The process of software testing usually involves the correction of a detected bug immediately upon detection. In this article, in contrast, we discuss continuous time testing of a software with periodic debugging in which bugs are corrected, instead of at the instants of their detection, at some pre-specified time points. Under the assumption of renewal distribution for the time between successive occurrence of a bug, maximum-likelihood estimation of the initial number of bugs in the software is considered, when the renewal distribution belongs to any general parametric family or is arbitrary. The asymptotic properties of the estimated model parameters are also discussed. Finally, we investigate the finite sample properties of the estimators, specially that of the number of initial number of bugs, through simulation.


Author(s):  
Johannes Klement

AbstractTo which extent do happiness correlates contribute to the stability of life satisfaction? Which method is appropriate to provide a conclusive answer to this question? Based on life satisfaction data of the German SOEP, we show that by Negative Binomial quasi-maximum likelihood estimation statements can be made as to how far correlates of happiness contribute to the stabilisation of life satisfaction. The results show that happiness correlates which are generally associated with a positive change in life satisfaction, also stabilise life satisfaction and destabilise dissatisfaction with life. In such as they lower the probability of leaving positive states of life satisfaction and increase the probability of leaving dissatisfied states. This in particular applies to regular exercise, volunteering and living in a marriage. We further conclude that both patterns in response behaviour and the quality of the measurement instrument, the life satisfaction scale, have a significant effect on the variation and stability of reported life satisfaction.


Sign in / Sign up

Export Citation Format

Share Document