scholarly journals MODELING MULTIPLE REGIMES IN FINANCIAL VOLATILITY WITH A FLEXIBLE COEFFICIENT GARCH(1,1) MODEL

2009 ◽  
Vol 25 (1) ◽  
pp. 117-161 ◽  
Author(s):  
Marcelo C. Medeiros ◽  
Alvaro Veiga

In this paper a flexible multiple regime GARCH(1,1)-type model is developed to describe the sign and size asymmetries and intermittent dynamics in financial volatility. The results of the paper are important to other nonlinear GARCH models. The proposed model nests some of the previous specifications found in the literature and has the following advantages. First, contrary to most of the previous models, more than two limiting regimes are possible, and the number of regimes is determined by a simple sequence of tests that circumvents identification problems that are usually found in nonlinear time series models. The second advantage is that the novel stationarity restriction on the parameters is relatively weak, thereby allowing for rich dynamics. It is shown that the model may have explosive regimes but can still be strictly stationary and ergodic. A simulation experiment shows that the proposed model can generate series with high kurtosis and low first-order autocorrelation of the squared observations and exhibit the so-called Taylor effect, even with Gaussian errors. Estimation of the parameters is addressed, and the asymptotic properties of the quasi-maximum likelihood estimator are derived under weak conditions. A Monte-Carlo experiment is designed to evaluate the finite-sample properties of the sequence of tests. Empirical examples are also considered.

2013 ◽  
Vol 5 (2) ◽  
pp. 133-162 ◽  
Author(s):  
Eric Hillebrand ◽  
Marcelo C. Medeiros ◽  
Junyue Xu

Abstract: We derive asymptotic properties of the quasi-maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual -rate and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Anil K. Bera ◽  
Antonio F. Galvao ◽  
Gabriel V. Montes-Rojas ◽  
Sung Y. Park

AbstractThis paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.


Biometrika ◽  
2020 ◽  
Author(s):  
Huijuan Ma ◽  
Limin Peng ◽  
Chiung-Yu Huang ◽  
Haoda Fu

Summary Progression of chronic disease is often manifested by repeated occurrences of disease-related events over time. Delineating the heterogeneity in the risk of such recurrent events can provide valuable scientific insight for guiding customized disease management. We propose a new sensible measure of individual risk of recurrent events and present a dynamic modelling framework thereof, which accounts for both observed covariates and unobservable frailty. The proposed modelling requires no distributional specification of the unobservable frailty, while permitting exploration of the dynamic effects of the observed covariates. We develop estimation and inference procedures for the proposed model through a novel adaptation of the principle of conditional score. The asymptotic properties of the proposed estimator, including the uniform consistency and weak convergence, are established. Extensive simulation studies demonstrate satisfactory finite-sample performance of the proposed method. We illustrate the practical utility of the new method via an application to a diabetes clinical trial that explores the risk patterns of hypoglycemia in type 2 diabetes patients.


2019 ◽  
Vol 7 (1) ◽  
pp. 394-417
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard

AbstractWe introduce a location-scale model for conditional heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the location and scale functions are introduced. Second, an estimator of the conditional extreme-value index is derived. The asymptotic properties of the estimators are established under mild assumptions and their finite sample properties are illustrated both on simulated and real data.


1998 ◽  
Vol 14 (2) ◽  
pp. 161-186 ◽  
Author(s):  
Laurence Broze ◽  
Olivier Scaillet ◽  
Jean-Michel Zakoïan

We discuss an estimation procedure for continuous-time models based on discrete sampled data with a fixed unit of time between two consecutive observations. Because in general the conditional likelihood of the model cannot be derived, an indirect inference procedure following Gouriéroux, Monfort, and Renault (1993, Journal of Applied Econometrics 8, 85–118) is developed. It is based on simulations of a discretized model. We study the asymptotic properties of this “quasi”-indirect estimator and examine some particular cases. Because this method critically depends on simulations, we pay particular attention to the appropriate choice of the simulation step. Finally, finite-sample properties are studied through Monte Carlo experiments.


Author(s):  
Denis Chetverikov ◽  
Dongwoo Kim ◽  
Daniel Wilhelm

In this article, we introduce the commands npiv and npivcv, which implement nonparametric instrumental-variable (NPIV) estimation methods without and with a cross-validated choice of tuning parameters, respectively. Both commands can impose the constraint that the resulting estimated function is monotone. Using such a shape restriction may significantly improve the performance of the NPIV estimator (Chetverikov and Wilhelm, 2017, Econometrica 85: 1303–1320) because the ill-posedness of the NPIV estimation problem leads to unconstrained estimators that suffer from particularly poor statistical properties such as high variance. However, the constrained estimator that imposes the monotonicity significantly reduces variance by removing nonmonotone oscillations of the estimator. We provide a small Monte Carlo experiment to study the estimators’ finite-sample properties and an application to the estimation of gasoline demand functions.


2019 ◽  
Vol 36 (4) ◽  
pp. 751-772 ◽  
Author(s):  
Javier Hualde ◽  
Morten Ørregaard Nielsen

We consider truncated (or conditional) sum of squares estimation of a parametric model composed of a fractional time series and an additive generalized polynomial trend. Both the memory parameter, which characterizes the behavior of the stochastic component of the model, and the exponent parameter, which drives the shape of the deterministic component, are considered not only unknown real numbers but also lying in arbitrarily large (but finite) intervals. Thus, our model captures different forms of nonstationarity and noninvertibility. As in related settings, the proof of consistency (which is a prerequisite for proving asymptotic normality) is challenging due to nonuniform convergence of the objective function over a large admissible parameter space, but, in addition, our framework is substantially more involved due to the competition between stochastic and deterministic components. We establish consistency and asymptotic normality under quite general circumstances, finding that results differ crucially depending on the relative strength of the deterministic and stochastic components. Finite-sample properties are illustrated by means of a Monte Carlo experiment.


2017 ◽  
Vol 47 (1) ◽  
pp. 182-211 ◽  
Author(s):  
Arvid Sjölander

A popular way to reduce confounding in observational studies is to use each study participant as his or her own control. This is possible when both the exposure and the outcome are time varying and have been measured at several time points for each individual. The case-time-control method is a special case, which, under certain assumptions, allows the analyst to control for confounding by time-varying covariates, while controlling for all time-stationary characteristics of the study participants. There are two formulations of the case-time-control method. One formulation requires that the exposure be binary, and the other requires that there be no more than two time points per individual. In this article the author proposes a generalization of the case-time-control method for nonbinary exposures and an arbitrary number of time points. The author derives the asymptotic properties of the resulting estimator and assesses its finite sample properties in a simulation study.


2001 ◽  
Vol 9 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Ethan Katz

Fixed-effects logit models can be useful in panel data analysis, when N units have been observed for T time periods. There are two main estimators for such models: unconditional maximum likelihood and conditional maximum likelihood. Judged on asymptotic properties, the conditional estimator is superior. However, the unconditional estimator holds several practical advantages, and therefore I sought to determine whether its use could be justified on the basis of finite-sample properties. In a series of Monte Carlo experiments for T < 20, I found a negligible amount of bias in both estimators when T ≥ 16, suggesting that a researcher can safely use either estimator under such conditions. When T < 16, the conditional estimator continued to have a very small amount of bias, but the unconditional estimator developed more bias as T decreased.


Sign in / Sign up

Export Citation Format

Share Document