scholarly journals Isomorphisms of subcategories of fusion systems of blocks and Clifford theory

2020 ◽  
Vol 23 (5) ◽  
pp. 925-930
Author(s):  
Morton E. Harris

AbstractLet k be an algebraically closed field of prime characteristic p. Let G be a finite group, let N be a normal subgroup of G, and let c be a G-stable block of kN so that {(kN)c} is a p-permutation G-algebra. As in Section 8.6 of [M. Linckelmann, The Block Theory of finite Group Algebras: Volume 2, London Math. Soc. Stud. Texts 92, Cambridge University, Cambridge, 2018], a {(G,N,c)}-Brauer pair {(R,f_{R})} consists of a p-subgroup R of G and a block {f_{R}} of {(kC_{N}(R))}. If Q is a defect group of c and {f_{Q}\in\operatorname{\textit{B}\ell}(kC_{N}(Q))}, then {(Q,f_{Q})} is a {(G,N,c)}-Brauer pair. The {(G,N,c)}-Brauer pairs form a (finite) poset. Set {H=N_{G}(Q,f_{Q})} so that {(Q,f_{Q})} is an {(H,C_{N}(Q),f_{Q})}-Brauer pair. We extend Lemma 8.6.4 of the above book to show that if {(U,f_{U})} is a maximal {(G,N,c)}-Brauer pair containing {(Q,f_{Q})}, then {(U,f_{U})} is a maximal {(H,C_{N}(c),f_{Q})}-Brauer pair containing {(Q,f_{Q})} and conversely. Our main result shows that the subcategories of {\mathcal{F}_{(U,f_{U})}(G,N,c)} and {\mathcal{F}_{(U,f_{U})}(H,C_{N}(Q),f_{Q})} of objects between and including {(Q,f_{Q})} and {(U,f_{U})} are isomorphic. We close with an application to the Clifford theory of blocks.

2014 ◽  
Vol 30 (3) ◽  
pp. 301-308
Author(s):  
DANA DEBORA GLITIA ◽  

We study Clifford Theory and field extensions for strongly group-graded algebras. In [Turull, A., Clifford theory and endoisomorphisms, J. Algebra 371 (2012), 510–520] and [Turull, A., Endoisomorphisms yield mo-dule and character correspondences, J. Algebra 394 (2013), 7–50] the author introduced the notion of endoisomorphism showing that there is a natural connection between it and Clifford Theory of finite group algebras. An endoisomorphism is an isomorphism between G-algebras of endomorphisms, where G is a finite group. We consider here endoisomorphisms between modules over strongly G-graded algebras. An endoisomorphism induces equivalences of categories with some good compatibility properties (see Theorem ?? and Theorem ?? below).


Author(s):  
Markus Linckelmann ◽  
William Murphy

Abstract We rule out a certain nine-dimensional algebra over an algebraically closed field to be the basic algebra of a block of a finite group, thereby completing the classification of basic algebras of dimension at most 12 of blocks of finite group algebras.


2017 ◽  
Vol 29 (3) ◽  
Author(s):  
Constantin-Cosmin Todea

AbstractWe give an explicit approach for Bockstein homomorphisms of the Hochschild cohomology of a group algebra and of a block algebra of a finite group and we show some properties. To give explicit definitions for these maps we use an additive decomposition and a product formula for the Hochschild cohomology of group algebras given by Siegel and Witherspoon in 1999. For an algebraically closed field


2014 ◽  
Vol 22 (2) ◽  
pp. 51-56
Author(s):  
A. S. Argáez

AbstractLet X be projective variety over an algebraically closed field k and G be a finite group with g.c.d.(char(k), |G|) = 1. We prove that any representations of G on a coherent sheaf, ρ : G → End(ℰ), has a natural decomposition ℰ ≃ ⊕ V ⊗k ℱV, where G acts trivially on ℱV and the sum run over all irreducible representations of G over k.


1979 ◽  
Vol 28 (3) ◽  
pp. 321-324 ◽  
Author(s):  
Gerald H. Cliff

AbstractLet k be an algebraically closed field of characteristic p, and G a finite group. Let M be an indecomposable kG-module with vertex V and source X, and let P be a Sylow p-subgroup of G containing V. Theorem: If dimkX is prime to p and if NG(V) is p-solvable, then the p-part of dimkM equals [P:V]; dimkX is prime to p if V is cyclic.


2017 ◽  
Vol 166 (2) ◽  
pp. 297-323
Author(s):  
HAO CHANG ◽  
ROLF FARNSTEINER

AbstractLet be a finite group scheme over an algebraically closed field k of characteristic char(k) = p ≥ 3. In generalisation of the familiar notion from the modular representation theory of finite groups, we define the p-rank rkp() of and determine the structure of those group schemes of p-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of p-rank ≤ 1 are closely related to those being of finite or domestic representation type.


2020 ◽  
Vol 71 (3) ◽  
pp. 1009-1047
Author(s):  
Patrick Le Meur

Abstract Let $R$ be the skew group algebra of a finite group acting on the path algebra of a quiver. This article develops both theoretical and practical methods to do computations in the Morita-reduced algebra associated to $R$. Reiten and Riedtmann proved that there exists an idempotent $e$ of $R$ such that the algebra $eRe$ is both Morita equivalent to $R$ and isomorphic to the path algebra of some quiver, which was described by Demonet. This article gives explicit formulas for the decomposition of any element of $eRe$ as a linear combination of paths in the quiver described by Demonet. This is done by expressing appropriate compositions and pairings in a suitable monoidal category, which takes into account the representation theory of the finite group.


1976 ◽  
Vol 79 (3) ◽  
pp. 433-441
Author(s):  
A. G. Williams

The ‘characteristics’ of the wreath product GWrSn, where G is a finite group, are certain polynomials (to be defined in section 2) which are generating functions for the simple characters of GWrSn. Schur (8) first used characteristics of the symmetric group. Specht (9) defined characteristics for GWrSn and found a relation between the characteristics of GWrSn and those of Sn which determined the simple characters of GWrSn. The object of this paper is to describe the p-block structure of GWrSn in the case where p is not a factor of the order of G. We use the relationship between the characteristics of GWrSn and those of Sn, which we deduce from a knowledge of the simple characters of GWrSn (these can be determined, independently of Specht's work, by using Clifford theory).


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650092
Author(s):  
Andreas Bächle ◽  
Mauricio Caicedo ◽  
Inneke Van Gelder

When considering the unit group of [Formula: see text] ([Formula: see text] the ring of integers of an abelian number field [Formula: see text] and a finite group [Formula: see text]) certain components in the Wedderburn decomposition of [Formula: see text] cause problems for known generic constructions of units; these components are called exceptional. Exceptional components are divided into two types: type 1 is division rings, type 2 is [Formula: see text]-matrix rings. For exceptional components of type 1 we provide infinite classes of division rings by describing the seven cases of minimal groups (with respect to quotients) having those division rings in their Wedderburn decomposition over [Formula: see text]. We also classify the exceptional components of type 2 appearing in group algebras of a finite group over number fields [Formula: see text] by describing all 58 finite groups [Formula: see text] having a faithful exceptional Wedderburn component of this type in [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document