Complete reducibility of subgroups of reductive algebraic groups over non-perfect fields IV: An 𝐹4 example

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.

2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2014 ◽  
Vol 14 (1) ◽  
pp. 185-220 ◽  
Author(s):  
Abe Noriyuki ◽  
Kaneda Masaharu

AbstractWe show that the modules for the Frobenius kernel of a reductive algebraic group over an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the simple modules of $p$-regular highest weights are rigid and determine their Loewy series, assuming the Lusztig conjecture on the irreducible characters for the reductive algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique filtration of minimal length with each subquotient semisimple, in which case the filtration is called the Loewy series.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


Author(s):  
P. Bala ◽  
R. W. Carter

LetGbe a simple adjoint algebraic group over an algebraically closed fieldK. We are concerned to describe the conjugacy classes of unipotent elements ofG. Goperates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements ofGand the nilpotent elements ofgwhich preserves theG-action, provided that the characteristic ofKis either 0 or a ‘good prime’ forG. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjointG-action.


2020 ◽  
Vol 71 (1) ◽  
pp. 321-334 ◽  
Author(s):  
Christopher Attenborough ◽  
Michael Bate ◽  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

Abstract Let $K$ be a reductive subgroup of a reductive group $G$ over an algebraically closed field $k$. The notion of relative complete reducibility, introduced in [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832], gives a purely algebraic description of the closed $K$-orbits in $G^n$, where $K$ acts by simultaneous conjugation on $n$-tuples of elements from $G$. This extends work of Richardson and is also a natural generalization of Serre’s notion of $G$-complete reducibility. In this paper we revisit this idea, giving a characterization of relative $G$-complete reducibility, which directly generalizes equivalent formulations of $G$-complete reducibility. If the ambient group $G$ is a general linear group, this characterization yields representation-theoretic criteria. Along the way, we extend and generalize several results from [M. Bate, B. Martin, G. Röhrle, R. Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z.269 (2011), no. 1, 809–832].


2015 ◽  
Vol 16 (4) ◽  
pp. 887-898
Author(s):  
Noriyuki Abe ◽  
Masaharu Kaneda

Let $G$ be a reductive algebraic group over an algebraically closed field of positive characteristic, $G_{1}$ the Frobenius kernel of $G$, and $T$ a maximal torus of $G$. We show that the parabolically induced $G_{1}T$-Verma modules of singular highest weights are all rigid, determine their Loewy length, and describe their Loewy structure using the periodic Kazhdan–Lusztig $P$- and $Q$-polynomials. We assume that the characteristic of the field is sufficiently large that, in particular, Lusztig’s conjecture for the irreducible $G_{1}T$-characters holds.


2018 ◽  
Vol 62 (2) ◽  
pp. 559-594
Author(s):  
Rolf Farnsteiner

AbstractLetUbe the unipotent radical of a Borel subgroup of a connected reductive algebraic groupG, which is defined over an algebraically closed fieldk. In this paper, we extend work by Goodwin and Röhrle concerning the commuting variety of Lie(U) for Char(k) = 0 to fields whose characteristic is good forG.


2018 ◽  
Vol 2019 (18) ◽  
pp. 5811-5853 ◽  
Author(s):  
Simon M Goodwin ◽  
Lewis W Topley

Abstract Let ${\mathbb{k}}$ be an algebraically closed field of characteristic p > 0 and let G be a connected reductive algebraic group over ${\mathbb{k}}$. Under some standard hypothesis on G, we give a direct approach to the finite W-algebra $U(\mathfrak{g},e)$ associated to a nilpotent element $e \in \mathfrak{g} = \textrm{Lie}\ G$. We prove a PBW theorem and deduce a number of consequences, then move on to define and study the p-centre of $U(\mathfrak{g},e)$, which allows us to define reduced finite W-algebras $U_{\eta}(\mathfrak{g},e)$ and we verify that they coincide with those previously appearing in the work of Premet. Finally, we prove a modular version of Skryabin’s equivalence of categories, generalizing recent work of the second author.


Sign in / Sign up

Export Citation Format

Share Document