scholarly journals Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations

Author(s):  
Pengbin Feng ◽  
Erkinjon T. Karimov

AbstractIn the present paper we consider an inverse source problem for a time-fractional mixed parabolic-hyperbolic equation with Caputo derivatives. In the case when the hyperbolic part of the considered mixed-type equation is the wave equation, the uniqueness of the source and the solution are strongly influenced by the initial time and the problem is generally ill-posed. However, when the hyperbolic part is time-fractional, the problem is well-posed if the end time is large. Our method relies on the orthonormal system of eigenfunctions of the operator with respect to the space variables. Finally, we prove uniqueness and stability of certain weak solutions for the problems under consideration.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiaoli Feng ◽  
Meixia Zhao ◽  
Peijun Li ◽  
Xu Wang

<p style='text-indent:20px;'>This paper is concerned with an inverse source problem for the stochastic wave equation driven by a fractional Brownian motion. Given the random source, the direct problem is to study the solution of the stochastic wave equation. The inverse problem is to determine the statistical properties of the source from the expectation and covariance of the final-time data. For the direct problem, it is shown to be well-posed with a unique mild solution. For the inverse problem, the uniqueness is proved for a certain class of functions and the instability is characterized. Numerical experiments are presented to illustrate the reconstructions by using a truncation-based regularization method.</p>


Author(s):  
R.A. Kirzhinov ◽  

In this paper investigated a problem with Dezin type condition for parabolic-hyperbolic mixed type equation. It is established a criterion for solution uniqueness to the problem.


The retarded solution of the wave equation for a point source in circular motion, whose speed exceeds the wave speed, is singular on a spiralling tube-like surface that is at rest in the rest frame of the point source. When solving the wave equation for a corresponding extended source, therefore, we are faced with integrals over the volume of the source which are improper and need to be handled either with the aid of the theory of generalized functions or by Hadamard’s method of finite parts. In this paper, after isolating the finite part of the gradient of the retarded potential due to a rotating extended source, we calculate the asymptotic values of the coefficients in its Fourier representation and show that the radial component of this gradient does not remain finite at those points within the source which move with the wave speed, and so lie on the boundary of the domain of hyperbolicity of the equation of the mixed type to which the wave equation in this case reduces. This latter singularity arises because the problem in question, though well posed physically, is in fact mathematically ill posed.


2020 ◽  
Vol 6 (1) ◽  
pp. 84
Author(s):  
Abdelhak Hafdallah

In this paper, we investigate the problem of optimal control for an ill-posed wave equation without using the extra hypothesis of Slater i.e. the set of admissible controls has a non-empty interior. Firstly, by a controllability approach, we make the ill-posed wave equation a well-posed equation with some incomplete data initial condition. The missing data requires us to use the no-regret control notion introduced by Lions to control distributed systems with  ncomplete data. After approximating the no-regret control by a low-regret control sequence, we characterize the optimal control by a singular optimality system.


2020 ◽  
Vol 28 (6) ◽  
pp. 829-847
Author(s):  
Hua Huang ◽  
Chengwu Lu ◽  
Lingli Zhang ◽  
Weiwei Wang

AbstractThe projection data obtained using the computed tomography (CT) technique are often incomplete and inconsistent owing to the radiation exposure and practical environment of the CT process, which may lead to a few-view reconstruction problem. Reconstructing an object from few projection views is often an ill-posed inverse problem. To solve such problems, regularization is an effective technique, in which the ill-posed problem is approximated considering a family of neighboring well-posed problems. In this study, we considered the {\ell_{1/2}} regularization to solve such ill-posed problems. Subsequently, the half thresholding algorithm was employed to solve the {\ell_{1/2}} regularization-based problem. The convergence analysis of the proposed method was performed, and the error bound between the reference image and reconstructed image was clarified. Finally, the stability of the proposed method was analyzed. The result of numerical experiments demonstrated that the proposed method can outperform the classical reconstruction algorithms in terms of noise suppression and preserving the details of the reconstructed image.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 573
Author(s):  
Marzia Sara Vaccaro ◽  
Francesco Paolo Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Raffaele Barretta

The simplest elasticity model of the foundation underlying a slender beam under flexure was conceived by Winkler, requiring local proportionality between soil reactions and beam deflection. Such an approach leads to well-posed elastostatic and elastodynamic problems, but as highlighted by Wieghardt, it provides elastic responses that are not technically significant for a wide variety of engineering applications. Thus, Winkler’s model was replaced by Wieghardt himself by assuming that the beam deflection is the convolution integral between soil reaction field and an averaging kernel. Due to conflict between constitutive and kinematic compatibility requirements, the corresponding elastic problem of an inflected beam resting on a Wieghardt foundation is ill-posed. Modifications of the original Wieghardt model were proposed by introducing fictitious boundary concentrated forces of constitutive type, which are physically questionable, being significantly influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are overcome in the present research using a displacement-driven nonlocal integral strategy obtained by swapping the input and output fields involved in Wieghardt’s original formulation. That is, nonlocal soil reaction fields are the output of integral convolutions of beam deflection fields with an averaging kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive boundary conditions involving nonlocal soil reactions, is established. As a key implication, the integrodifferential equations governing the elastostatic problem of an inflected elastic slender beam resting on a displacement-driven nonlocal integral foundation are replaced with much simpler differential equations supplemented with kinematic, static, and new constitutive boundary conditions. The proposed nonlocal approach is illustrated by examining and analytically solving exemplar problems of structural engineering. Benchmark solutions for numerical analyses are also detected.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sujun Weng

AbstractWe study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . We assume that $A'(s)=a(s)\geq 0$ A ′ ( s ) = a ( s ) ≥ 0 , $A(s)$ A ( s ) is a strictly increasing function, $A(0)=0$ A ( 0 ) = 0 , $b(x,t)\geq 0$ b ( x , t ) ≥ 0 , and $\alpha (x,t)\geq 0$ α ( x , t ) ≥ 0 . If $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , then we prove the stability of weak solutions without the boundary value condition.


Sign in / Sign up

Export Citation Format

Share Document