Regularization method for an ill-posed Cauchy problem for elliptic equations

Author(s):  
Abderafik Benrabah ◽  
Nadjib Boussetila ◽  
Faouzia Rebbani

AbstractThe paper is devoted to investigating a Cauchy problem for homogeneous elliptic PDEs in the abstract Hilbert space given by

2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 422
Author(s):  
Nguyen Anh Triet ◽  
Nguyen Duc Phuong ◽  
Van Thinh Nguyen ◽  
Can Nguyen-Huu

In this work, we focus on the Cauchy problem for the Poisson equation in the two dimensional domain, where the initial data is disturbed by random noise. In general, the problem is severely ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously on the data. To regularize the instable solution of the problem, we have applied a nonparametric regression associated with the truncation method. Eventually, a numerical example has been carried out, the result shows that our regularization method is converged; and the error has been enhanced once the number of observation points is increased.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Tuan H. Nguyen ◽  
Binh Thanh Tran

We consider the following Cauchy problem for the elliptic equation with inhomogeneous source in a rectangular domain with Dirichlet boundary conditions at x=0 and x=π. The problem is ill-posed. The main aim of this paper is to introduce a regularization method and use it to solve the problem. Some sharp error estimates between the exact solution and its regularization approximation are given and a numerical example shows that the method works effectively.


Author(s):  
Shangqin He ◽  
Xiufang Feng

In this paper, the ill-posed Cauchy problem for the Helmholtz equation is investigated in a strip domain. To obtain stable numerical solution, a mollification regularization method with Dirichlet kernel is proposed. Error estimate between the exact solution and its approximation is given. A numerical experiment of interest shows that our procedure is effective and stable with respect to perturbations of noise in the data.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Songshu Liu ◽  
Lixin Feng

In this paper we investigate a Cauchy problem of two-dimensional (2D) heat conduction equation, which determines the internal surface temperature distribution from measured data at the fixed location. In general, this problem is ill-posed in the sense of Hadamard. We propose a revised Tikhonov regularization method to deal with this ill-posed problem and obtain the convergence estimate between the approximate solution and the exact one by choosing a suitable regularization parameter. A numerical example shows that the proposed method works well.


Author(s):  
Nguyen Huy Tuan ◽  
Tran Thanh Binh ◽  
Tran Quoc Viet ◽  
Daniel Lesnic

AbstractWe study the Cauchy problem for nonlinear (semilinear) elliptic partial differential equations in Hilbert spaces. The problem is severely ill-posed in the sense of Hadamard. Under a weak


2020 ◽  
Vol 36 (3) ◽  
pp. 475-482
Author(s):  
HONG-KUN XU ◽  
NAJLA ALTWAIJRY ◽  
SOUHAIL CHEBBI

We consider an iterative method for regularization of a variational inequality (VI) defined by a Lipschitz continuous monotone operator in the case where the set of feasible solutions is decomposed to the intersection of finitely many closed convex subsets of a Hilbert space. We prove the strong convergence of the sequence generated by our algorithm. It seems that this is the first time in the literature to handle iterative solution of ill-posed VIs in the domain decomposition case.


Author(s):  
Sassane Roumaissa ◽  
Boussetila Nadjib ◽  
Rebbani Faouzia ◽  
Benrabah Abderafik

A preconditioning version of the Kozlov–Maz’ya iteration method for the stable identification of missing boundary data is presented for an ill-posed problem governed by generalized elliptic equations. The ill-posed data identification problem is reformulated as a sequence of well-posed fractional elliptic equations in infinite domain. Moreover, some convergence results are established. Finally, numerical results are included showing the accuracy and efficiency of the proposed method.


Author(s):  
Shangqin He ◽  
Xiufang Feng

In this paper, an identical approximate regularization method is extended to the Cauchy problem of two-dimensional heat conduction equation, this kind of problem is severely ill-posed. The convergence rates are obtained under a priori regularization parameter choice rule. Numerical results are presented for two examples with smooth and continuous but not smooth boundaries, and compared the identical approximate regularization solutions which are displayed in paper. The numerical results show that our method is effective, accurate and stable to solve the ill-posed Cauchy problems.


Sign in / Sign up

Export Citation Format

Share Document