scholarly journals Convergence analysis of a variational quasi-reversibility approach for an inverse hyperbolic heat conduction problem

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vo Anh Khoa ◽  
Manh-Khang Dao

AbstractWe study a time-reversed hyperbolic heat conduction problem based upon the Maxwell–Cattaneo model of non-Fourier heat law. This heat and mass diffusion problem is a hyperbolic type equation for thermodynamics systems with thermal memory or with finite time-delayed heat flux, where the Fourier or Fick law is proven to be unsuccessful with experimental data. In this work, we show that our recent variational quasi-reversibility method for the classical time-reversed heat conduction problem, which obeys the Fourier or Fick law, can be adapted to cope with this hyperbolic scenario. We establish a generic regularization scheme in the sense that we perturb both spatial operators involved in the PDE. Driven by a Carleman weight function, we exploit the natural energy method to prove the well-posedness of this regularized scheme. Moreover, we prove the Hölder rate of convergence in the mixed {L^{2}}–{H^{1}} spaces.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Simon Julius ◽  
Boris Leizeronok ◽  
Beni Cukurel

Finite integral transform techniques are applied to solve the one-dimensional (1D) dual-phase heat conduction problem, and a comprehensive analysis is provided for general time-dependent heat generation and arbitrary combinations of various boundary conditions (Dirichlet, Neumann, and Robin). Through the dependence on the relative differences in heat flux and temperature relaxation times, this analytical solution effectively models both parabolic and hyperbolic heat conduction. In order to demonstrate several exemplary physical phenomena, four distinct cases that illustrate the wavelike heat conduction behavior are presented. In the first model, following an initial temperature spike in a slab, the thermal evolution portrays immediate dissipation in parabolic systems, whereas the dual-phase solution depicts wavelike temperature propagation—the intensity of which depends on the relaxation times. Next, the analysis of periodic surface heat flux at the slab boundaries provides evidence of interference patterns formed by temperature waves. In following, the study of Joule heating driven periodic generation inside the slab demonstrates that the steady-periodic parabolic temperature response depends on the ratio of pulsatile electrical excitation and the electrical resistivity of the slab. As for the dual-phase model, thermal resonance conditions are observed at distinct excitation frequencies. Building on findings of the other models, the case of moving constant-amplitude heat generation is considered, and the occurrences of thermal shock and thermal expansion waves are demonstrated at particular conditions.


2011 ◽  
Vol 16 (1) ◽  
pp. 220-232 ◽  
Author(s):  
Harijs Kalis ◽  
Andris Buikis

This paper is concerning with the 1-D initial–boundary value problem for the hyperbolic heat conduction equation. Numerical solutions are obtained using two discretizations methods – the finite difference scheme (FDS) and the difference scheme with the exact spectrum (FDSES). Hyperbolic heat conduction problem with boundary conditions of the third kind is solved by the spectral method. Method of lines and the Fourier method are considered for the time discretization. Finite difference schemes with central difference and exact spectrum are analyzed. A novel method for solving the discrete spectral problem is used. Special matrix with orthonormal eigenvectors is formed. Numerical results are obtained for steel quenching problem in the plate and in the sphere with holes. The hyperbolic heat conduction problem in the sphere with holes is reduced to the problem in the plate. Some examples and numerical results for two typical problems related to hyperbolic heat conduction equation are presented.


Author(s):  
A. Aghili

AbstractIn this study, we present some new results for the time fractional mixed boundary value problems. We consider a generalization of the Heat - conduction problem in two dimensions that arises during the manufacturing of p - n junctions. Constructive examples are also provided throughout the paper. The main purpose of this article is to present mathematical results that are useful to researchers in a variety of fields.


2014 ◽  
Vol 06 (01) ◽  
pp. 1450002 ◽  
Author(s):  
A. H. AKBARZADEH ◽  
Z. T. CHEN

In the present work, the dual phase lag heat conduction in functionally graded hollow spheres is investigated under spherically symmetric and axisymmetric thermal loading. The heat conduction equation is given based on the dual phase lag theory to consider the details of energy transport in the material in comparison with the non-Fourier hyperbolic heat conduction. All the material properties of the sphere are taken to vary continuously along the radial direction following a power-law with arbitrary non-homogeneity indices except the phase lags which are assumed to be constant for simplicity. The specified spherically symmetric and axisymmetric boundary conditions of the sphere lead to a 1D and 2D heat conduction problem, respectively. Employing the Laplace transform to eliminate the time dependency of the problem, analytical solutions are obtained for the temperature and heat flux. The final results in the time domain are obtained by a numerical Laplace inversion method. The speed of thermal wave in the functionally graded sphere based on the dual phase lag is compared with that of the hyperbolic heat conduction. Furthermore, the numerical results are shown to clarify the effects of phase lags and non-homogeneity indices on the thermal response. The current results are verified with those reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document