An inverse problem for a nonlinear mathematical model of sorption dynamics with mixed-diffusional kinetics

Author(s):  
A. M. DENISOV ◽  
H. LAMOS
2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


2020 ◽  
Vol 16 (32) ◽  
pp. 195-223
Author(s):  
Edgardo Pérez

In this paper, we present a nonlinear mathematical model, describing the spread of high-risk alcohol consumption behavior among college students in Colombia. We proved the existence and stability of the alcohol-free and drinking state equilibrium by means of Lyapunov function and LaSalle’s invariance principle. Also, we apply optimal control to study the impact of a preventive measure on the spread of drinking behavior among college students. Finally, we use numerical simulations and available data provided by the United Nations Office on Drugs and Crime (UNODC) and the Colombian Ministry of Justice to validate the obtained mathematical model.


2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


Author(s):  
V.P. Ivanov

The article deals with the problem of synthesis of terminal control. A functional, a nonlinear mathematical model of a dynamic object, restrictions on the maximum permissible values of control are given. The control law is synthesized. The following statement is proved: the synthesis of the optimal control is carried out using the entire initial mathematical model of the dynamical object, but to calculate the control at any particular moment of time, it is possible to use a reduced (truncated) model, which simplifies the computational algorithms. Thus, there is an informational dualism of the manage- ment task. The approach is an extension of the principle of information redefinition of Yu.B. Germeier to the area of optimal terminal control.


Author(s):  
Mohammed Hajeeh

Repairable systems are either repaired perfectly to a state of as good as new or imperfectly. In this work, a system which undergoes imperfect repair is investigated. A nonlinear mathematical model is formulated for a system with the objective of finding the optimum failure and repair rate with the minimum costs subject to attaining a pre-specified performance level. Two imperfect repair models are examined. In the first model, the system is replaced by a new one after several failures. In the second model, the system is either replaced with a specific probability (1-p) or is imperfectly repaired after each failure with probability p. The optimal solution is presented in a closed form expression.


Sign in / Sign up

Export Citation Format

Share Document