scholarly journals Early Detection of Parkinson’s Disease by Using SPECT Imaging and Biomarkers

2019 ◽  
Vol 29 (1) ◽  
pp. 1329-1344 ◽  
Author(s):  
Gunjan Pahuja ◽  
T. N. Nagabhushan ◽  
Bhanu Prasad

Abstract Precise and timely diagnosis of Parkinson’s disease is important to control its progression among subjects. Currently, a neuroimaging technique called dopaminergic imaging that uses single photon emission computed tomography (SPECT) with 123I-Ioflupane is popular among clinicians for detecting Parkinson’s disease in early stages. Unlike other studies, which consider only low-level features like gray matter, white matter, or cerebrospinal fluid, this study explores the non-linear relation between different biomarkers (SPECT + biological) using deep learning and multivariate logistic regression. Striatal binding ratios are obtained using 123I-Ioflupane SPECT scans from four brain regions which are further integrated with five biological biomarkers to increase the diagnostic accuracy. Experimental results indicate that this investigated approach can differentiate subjects with 100% accuracy. The obtained results outperform the ones reported in the literature. Furthermore, logistic regression model has been developed for estimating the Parkinson’s disease onset probability. Such models may aid clinicians in diagnosing this disease.

2021 ◽  
Vol 54 (4) ◽  
pp. 232-237
Author(s):  
Julieta E. Arena ◽  
Leandro Urrutia ◽  
Germán Falasco ◽  
Magdalena Ponce de Leon ◽  
Silvia Vazquez ◽  
...  

Abstract Objective: To determine whether technetium-99m-labeled tropane derivative single-photon emission computed tomography (99mTc-TRODAT-1 SPECT) provides results comparable to those of the less widely available, less accessible tool fluorine-18-labeled fluorodopa positron-emission tomography (18F-FDOPA PET) in the setting of a movement disorders clinic. Materials and Methods: In this prospective pilot study, eight subjects with a clinical diagnosis of Parkinson’s disease were randomly selected from among patients under treatment at a movement disorders clinic and submitted to 99mTc-TRODAT-1 SPECT and 18F-FDOPA PET. The results were read by two experienced observers, and a semiquantitative analysis was performed. Results: The visual and semiquantitative analyses were concordant for all studies, showing that radiotracer uptake in the contralateral striatum on the most affected side was lower when 99mTc-TRODAT-1 SPECT was employed. The semiquantitative analysis demonstrated a significant correlation between 18F-FDOPA PET and 99mTc-TRODAT-1 SPECT (r = 0.73; p < 0.01). Conclusion: It appears that 99mTc-TRODAT-1 SPECT is a valid option for the study of dopaminergic function in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document