scholarly journals Pseudo-free families of computational universal algebras

2020 ◽  
Vol 15 (1) ◽  
pp. 197-222
Author(s):  
Mikhail Anokhin

AbstractLet Ω be a finite set of finitary operation symbols. We initiate the study of (weakly) pseudo-free families of computational Ω-algebras in arbitrary varieties of Ω-algebras. A family (Hd | d ∈ D) of computational Ω-algebras (where D ⊆ {0, 1}*) is called polynomially bounded (resp., having exponential size) if there exists a polynomial η such that for all d ∈ D, the length of any representation of every h ∈ Hd is at most $\eta (|d|)\left( \text{ resp}\text{., }\left| {{H}_{d}} \right|\le {{2}^{\eta (|d|)}} \right).$ First, we prove the following trichotomy: (i) if Ω consists of nullary operation symbols only, then there exists a polynomially bounded pseudo-free family; (ii) if Ω = Ω0 ∪ {ω}, where Ω0 consists of nullary operation symbols and the arity of ω is 1, then there exist an exponential-size pseudo-free family and a polynomially bounded weakly pseudo-free family; (iii) in all other cases, the existence of polynomially bounded weakly pseudo-free families implies the existence of collision-resistant families of hash functions. In this trichotomy, (weak) pseudo-freeness is meant in the variety of all Ω-algebras. Second, assuming the existence of collision-resistant families of hash functions, we construct a polynomially bounded weakly pseudo-free family and an exponential-size pseudo-free family in the variety of all m-ary groupoids, where m is an arbitrary positive integer.

2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Dmitry Itsykson ◽  
Alexander Okhotin ◽  
Vsevolod Oparin

The partial string avoidability problem is stated as follows: given a finite set of strings with possible “holes” (wildcard symbols), determine whether there exists a two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this article establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form satisfiability problem, where each clause has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting proof lines (such as clauses, inequalities, polynomials, etc.). First, it is proved that there is a particular formula that has a short refutation in Resolution with a shift rule but requires classical proofs of exponential size. At the same time, it is shown that exponential lower bounds for classical proof systems can be translated for their shifted versions. Finally, it is shown that superpolynomial lower bounds on the size of shifted proofs would separate NP from PSPACE; a connection to lower bounds on circuit complexity is also established.


2004 ◽  
Vol 35 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kiyoshi Baba ◽  
Ken-Ichi Yoshida

Let $ R $ be an integral domain and $ \alpha $ an anti-integral element of degree $ d $ over $ R $. In the paper [3] we give a condition for $ \alpha^2-a$ to be a unit of $ R[\alpha] $. In this paper we will generalize the result to an arbitrary positive integer $n$ and give a condition, in terms of the ideal $ I_{[\alpha]}^{n}D(\sqrt[n]{a}) $ of $ R $, for $ \alpha^{n}-a$ to be a unit of $ R[\alpha] $.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes Type A Weyl group multiple Dirichlet series. It begins by defining the basic shape of the class of Weyl group multiple Dirichlet series. To do so, the following parameters are introduced: Φ‎, a reduced root system; n, a positive integer; F, an algebraic number field containing the group μ‎₂ₙ of 2n-th roots of unity; S, a finite set of places of F containing all the archimedean places, all places ramified over a ℚ; and an r-tuple of nonzero S-integers. In the language of representation theory, the weight of the basis vector corresponding to the Gelfand-Tsetlin pattern can be read from differences of consecutive row sums in the pattern. The chapter considers in this case expressions of the weight of the pattern up to an affine linear transformation.


2019 ◽  
Vol 31 (1) ◽  
pp. 241-263 ◽  
Author(s):  
Eric Jespers ◽  
Arne Van Antwerpen

Abstract Let {r\colon X^{2}\rightarrow X^{2}} be a set-theoretic solution of the Yang–Baxter equation on a finite set X. It was proven by Gateva-Ivanova and Van den Bergh that if r is non-degenerate and involutive, then the algebra {K\langle x\in X\mid xy=uv\text{ if }r(x,y)=(u,v)\rangle} shares many properties with commutative polynomial algebras in finitely many variables; in particular, this algebra is Noetherian, satisfies a polynomial identity and has Gelfand–Kirillov dimension a positive integer. Lebed and Vendramin recently extended this result to arbitrary non-degenerate bijective solutions. Such solutions are naturally associated to finite skew left braces. In this paper we will prove an analogue result for arbitrary solutions {r_{B}} that are associated to a left semi-brace B; such solutions can be degenerate or can even be idempotent. In order to do so, we first describe such semi-braces and then prove some decompositions results extending those of Catino, Colazzo and Stefanelli.


1990 ◽  
Vol 33 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Shian Gao

We prove the following: Assume that , where p is an odd positive integer, g(ζ is a transcendental entire function with order of growth less than 1, and set A(z) = B(ezz). Then for every solution , the exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger conclusion holds. We also give an example to show that if the order of growth of g(ζ) equals 1 (or, in fact, equals an arbitrary positive integer), this conclusion doesn't hold.


1956 ◽  
Vol 10 ◽  
pp. 1-7
Author(s):  
L. Carlitz

Let p be a prime > 2 and m an arbitrary positive integer; definewhere (r/p) is the Legendre symbol. We consider the problem of finding the highest power of p dividing Sm. A little more generally, if we putwhere a is an arbitrary integer, we seek the highest power of p dividing Sm(a). Clearly Sm = Sm(0), and Sm(a) = Sm(b) when a ≡ b (mod p).


Author(s):  
Yasuyuki Hirano

AbstractA ring R is called a (proper) quotient no-zero-divisor ring if every (proper) nonzero factor ring of R has no zero-divisors. A characterization of a quotient no-zero-divisor ring is given. Using it, the additive groups of quotient no-zero-divisor rings are determined. In addition, for an arbitrary positive integer n, a quotient no-zero-divisor ring with exactly n proper ideals is constructed. Finally, proper quotient no-zero-divisor rings and their additive groups are classified.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Muharrem Tolga Sakallı ◽  
Sedat Akleylek ◽  
Bora Aslan ◽  
Ercan Buluş ◽  
Fatma Büyüksaraçoğlu Sakallı

We present an algebraic construction based on state transform matrix (companion matrix) forn×n(wheren≠2k,kbeing a positive integer) binary matrices with high branch number and low number of fixed points. We also provide examples for20×20and24×24binary matrices having advantages on implementation issues in lightweight block ciphers and hash functions. The powers of the companion matrix for an irreducible polynomial overGF(2)with degree 5 and 4 are used in finite field Hadamard or circulant manner to construct20×20and24×24binary matrices, respectively. Moreover, the binary matrices are constructed to have good software and hardware implementation properties. To the best of our knowledge, this is the first study forn×n(wheren≠2k,kbeing a positive integer) binary matrices with high branch number and low number of fixed points.


2012 ◽  
Vol 93 (1-2) ◽  
pp. 85-90 ◽  
Author(s):  
ANDREJ DUJELLA ◽  
FLORIAN LUCA

AbstractWe study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.


Sign in / Sign up

Export Citation Format

Share Document