theoretic solution
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
John T. Hanley

PurposeThe purpose of this paper is to illustrate how game theoretic solution concepts inform what classes of problems will be amenable to artificial intelligence and machine learning (AI/ML), and how to evolve the interaction between human and artificial intelligence.Design/methodology/approachThe approach addresses the development of operational gaming to support planning and decision making. It then provides a succinct summary of game theory for those designing and using games, with an emphasis on information conditions and solution concepts. It addresses how experimentation demonstrates where human decisions differ from game theoretic solution concepts and how games have been used to develop AI/ML. It concludes by suggesting what classes of problems will be amenable to AI/ML, and which will not. It goes on to propose a method for evolving human/artificial intelligence.FindingsGame theoretic solution concepts inform classes of problems where AI/ML 'solutions' will be suspect. The complexity of the subject requires a campaign of learning.Originality/valueThough games have been essential to the development of AI/ML, practitioners have yet to employ game theory to understand its limitations.


2021 ◽  
Vol 567 ◽  
pp. 196-209 ◽  
Author(s):  
Marcos Mazari-Armida
Keyword(s):  

Author(s):  
Andrea Celli

AbstractThe computational study of game-theoretic solution concepts is fundamental to describe the optimal behavior of rational agents interacting in a strategic setting, and to predict the most likely outcome of a game. Equilibrium computation techniques have been applied to numerous real-world problems. Among other applications, they are the key building block of the best poker-playing AI agents [5, 6, 27], and have been applied to physical and cybersecurity problems (see, e.g., [18, 20, 21, 30–32]).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Mehdi Dadvar ◽  
Saeed Moazami ◽  
Harley R. Myler ◽  
Hassan Zargarzadeh

Consider a dynamic task allocation problem, where tasks are unknowingly distributed over an environment. This paper considers each task comprising two sequential subtasks: detection and completion, where each subtask can only be carried out by a certain type of agent. We address this problem using a novel nature-inspired approach called “hunter and gatherer.” The proposed method employs two complementary teams of agents: one agile in detecting (hunters) and another skillful in completing (gatherers) the tasks. To minimize the collective cost of task accomplishments in a distributed manner, a game-theoretic solution is introduced to couple agents from complementary teams. We utilize market-based negotiation models to develop incentive-based decision-making algorithms relying on innovative notions of “certainty and uncertainty profit margins.” The simulation results demonstrate that employing two complementary teams of hunters and gatherers can effectually improve the number of tasks completed by agents compared to conventional methods, while the collective cost of accomplishments is minimized. In addition, the stability and efficacy of the proposed solutions are studied using Nash equilibrium analysis and statistical analysis, respectively. It is also numerically shown that the proposed solutions function fairly; that is, for each type of agent, the overall workload is distributed equally.


Sign in / Sign up

Export Citation Format

Share Document