Performance Enhancement of Multichannel Gigabit Rate Bidirectional WDM-PON Using RSOA and Optimized Modulation Format

2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Sooraj Parkash ◽  
Anurag Sharma ◽  
Harsukhpreet Singh

AbstractThis paper successfully demonstrates bidirectional wavelength division multiplexing passive optical network (WDM-PON) system for 32 channels, 0.8 nm (100 GHz) channels spacing with 3.5 GHz filter bandwidth. The system delivers 160 GB/s data rate and 80 GB/s data rate in downstream and upstream, respectively. The optical source for downstream data and upstream data is mode-locked laser at central office and reflective semiconductor optical amplifier (RSOA) at optical network unit. The maximum reach of designed system is 50 km without using any dispersion compensation scheme. This paper comprises comparison of series of modulation format in downstream and upstream such as SOLITON, NRZ, RZ, MANCHESTER, CSRZ and CRZ-DPSK and optimization of the performance of designed system. It has been observed that CRZ-DPSK/NRZ gives best performance in downstream and upstream transmission for designed system. The simulation work report of minimum BER is e

Author(s):  
Subhashini N ◽  
Brintha Therese A

<p>A number of applications are growing day by day and so the traffic. The need for bandwidth is also increasing at a rapid rate. The bandwidth and speed with which data can be transferred was very less when compared to core networks. The access network which was once a bottleneck is no longer so because of use of optic fiber (FTTH networks). A number of variants of Passive Optical Network (PON) have been proposed like the WDM PON and the Hybrid PON. Hybrid PON is a combination of TDM PON and WDM PON and is advantageous over WDMPON. This paper focuses on high capacity networks that can provide high data rate and long reach in the access part of the network. NRZ modulation format is normally used for transmission.  We consider the advantages provided by the advanced modulation formats like DPSK. This modulation format is used to here and its benefits are evaluated in Hybrid PON network to increase the capacity and the reach of the network. Parameters like the BER and the Q factors are analysed using Optisystem Software. Distortion and the phenomena of dispersion can limit the performance of such a system. Hence Dispersion compensation mechanisms like the Dispersion Compensation Fiber (DCF) are used in the system to transmit data over large distance.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shippu Sachdeva ◽  
Jagjit Malhotra ◽  
Manoj Kumar

Abstract Long reach Passive optical network (LR-PON) is an attractive solution to fulfill the ever-increasing bandwidth requirements due to propelling internet applications and competent to serve distant optical network units (ONUs). Wavelength division multiplexed (WDM) PON systems experience distance and performance limiting constraint termed as Dispersion. In order to compensate dispersion effects, Fiber bragg gratings (FBGs) and Dispersion compensation fibers (DCFs) are incorporated extensively in PONs. Performance of DCF is better than FBG in terms of dispersion compensation, but it comes at the cost of 3 $/m (very expensive). Therefore, long reach ultra dense WDM-PON systems are needed with incorporation of economical and high performance DCMs. Three newly constructed hybrid DCMs are investigated such as FBG-DCF (module 1), OPC-DCF (module 2), and FBG-DCF-OPC (module 3) in WDM-PON to get optimal DCM in terms of dispersion compensation efficiency (DCE) and economical operation. As per author’s best knowledge, DCE calculations and performance enhancement with cost reduction using hybrid DCMs in ultra dense WDM-PON, is not reported so far. WDM-PON consists of 32 channels at 25 GHz channel spacing is analyzed for 300 km link distance at 10 Gbps/channel using different hybrid DCMs. It is perceived that highest DCE of 70% is given by module 3 with maximum cost reduction of 19.84%. DCE performance of three modules is as follows: Module 3 (DCE 70%), Module 1 (DCE 55%), Module 2 (DCE 45%) and cost reduction/increase from conventional module by 19.84% reduction (Module 3), 19.05% reduction (Module 1), and increase 10.5% (Module 2). Hence, Module 3 is preferred for long reach WDM-PON to get high performance with lesser cost.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajendraprasad A. Pagare ◽  
Santosh Kumar ◽  
Abhilasha Mishra

AbstractIn this paper, we have presented the design and simulation of a 7-channel next-generation passive optical network (NG-PON2) network for the deployment of Fiber-to-the-X (FTTX) access network. Coexistence architecture is proposed, designed and simulated for the implementation of NG-PON2 access network. In a coexistence architecture approach, legacy PON networks like Gigabit passive optical network (GPON) PON, 10GPON, etc. and wavelength division multiplexing (WDM)-PON supporting point-to-point connectivity are designed and simulated together. A 4 W 4 WDM-PON in which each channel carrying data at 2.5 Gbps data rate is capable of supporting a throughput channel capacity of 65.5 Gbps. NG-PON2 network is designed and simulated at 187.1, 187.2, 187.3 and 187.5 to 187.8 THz wavelengths in downstream direction for different link distances from 40 to 80 km looking into the requirement of reach of access network for future cities. The network performance parameters such as bit error rate (BER), quality factor (Q-factor), signal-to-noise ratio using the Optisystem-16 simulator at above data rates and link distances. Further, channel capacity estimation is done for single-mode fiber channel coexistence NG-PON2 configuration up to 80 km supporting BER e-13 and Q-factor 7 for WDM link and BER e-12 and Q-factor 7 for a legacy network supporting almost-1 Gbps data rate to 65 users and 100 Mbps to 512 user.


2018 ◽  
Vol 7 (4) ◽  
pp. 6652
Author(s):  
N. Subhashini ◽  
A. Brintha Therese

With growing number of applications and network traffic, optic fibers are extensively used in the access part of the network. Passive Optical Networks (PON) in particular, Ethernet PON (EPON) networks based on Time Division Multiple Access (TDMA) are more prominently used in many parts of the world. Though Wavelength Division Multiplexing (WDM) PON has its own advantages, considering the cost and utilisation of such networks in the access part makes it less useful. On the other hand, Hybrid PON network combines the advantages of both EPON and WDM PON Networks. The objective of this paper is to identify suitable electrical filters for a 16-channel Hybrid Passive Optical Network with a transmission rate of 10Gbps per channel, by analysing their performance in terms of Q factor and Bit Error Rate. Different filters like the Bessel filter, Gaussian filter, Raised Cosine Filter, Rectangular filter, Butterworth filter, Chebyshev Filter are compared and their performances are evaluated. DB Modulation format that provides a longer reach is used at the transmitter to evaluate the different scenarios and the simulation is carried out using Optisystem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
M. S. Salleh ◽  
A. S. M. Supa’at ◽  
S. M. Idrus ◽  
S. Yaakob ◽  
Z. M. Yusof

We propose a new architecture of dynamic time-wavelength division multiplexing-passive optical network (TWDM-PON) system that employs integrated all-optical packet routing (AOPR) module using4λ×10 Gbps downstream signal to support 20 km fiber transmission. This module has been designed to support high speed L2 aggregation and routing in the physical layer PON system by using multicasting cross-gain modulation (XGM) to route packet from any PON port to multiple PON links. Meanwhile, the fixed wavelength optical line terminal (OLT) transmitter with wavelength tuning free features has been designed to integrate with the semiconductor optical amplifier (SOA) and passive arrayed waveguide grating (AWG). By implementing hybrid multicasting and multiplexing, the system has been able to support a PON system with full flexibility function for managing highly efficient dynamic bandwidth allocation to support the4λ×10 Gb/s TWDM-PON system used to connect 4 different PON links using fixed wavelength OLT transceivers with maximum 38 dB link loss.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Li Hong-Jie

AbstractFor the commercial wavelength division multiplexing passive optical network (WDM-PON) with standard single-mode fiber SSMF-28 and 1:64 passive fiber branching at its far end (RN) and 100 GHz C-band continuous wavelength (CW) lasers, the maximum coverage and optimal transmission power of STM-16 and STM-64 with external modulators at different speeds and wave numbers (4λ, 8λ and 16λ) are obtained, respectively. The performance parameter of the high data rate WDM-PON system is analyzed with respect to a number of channels and reach. In order to improve the network utilization and receiving efficiency, the influence of different channels and transmission distances on the performance of high data rate WDM-PON system is analyzed. Simulation analysis with Optisystem15.0. The maximum transmission power required to achieve the maximum transmission distance under the condition of nonlinear constraints is obtained. In order to save power consumption, the configuration of each multi-band PON is optimized in terms of transmission power. It is found that WDM-PON system has to compromise between aggregated data rate and system reach. Future software defined access network reconfigure the access network depending on the dynamic demand and the resources available. Hence depending on the distance between the optical line terminal (OLT) and optical network unit (ONU) guaranteed data rate can be estimated. ONU is equipped with a tunable optical filter (TOF) hence future wavelength can be reconfigured by both service provider and user. It makes it possible for software to customize optical access network.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Shuai Chen ◽  
Wei Nai ◽  
Fangqi Zhang ◽  
Shaoyin Wang ◽  
Decun Dong ◽  
...  

Wavelength-division-multiplexing passive-optical-network (WDM-PON) has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF) technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
N. Ahmed ◽  
Hilal A. Fadhil ◽  
S. A. Aljunid ◽  
Md. Sharafat Ali ◽  
Matiur Rahman

AbstractIn this paper, the performance of wavelength division multiplexing-passive optical network (WDM-PON) system using the erbium-doped fiber amplifier (EDFA) is optimized and evaluated. The optimization is analyzed by finding the EDFA length range at which the output power produced are the highest and the pump power range at which the gain flatness produced are within the effective range (0.3 dB). After the optimization process, the optimized EDFA system produces the gain of 26.6±0.292 dB, noise figure of 3.82 dB and output power of 7 dBm and the system is then implemented into WDM system. The performance of WDM system is compared against the system without EDFA in terms of bit error rate (BER). Results obtained prove that the proposed system with the EDFA consistently performs better than the conventional system.


Sign in / Sign up

Export Citation Format

Share Document