Impact Analysis of the Number of Core on Hexagonal Multicore Fibre

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Vyas

AbstractThe multicore fibre (MCF) is an effective and auspicious technology to overawe the limitation of the single-mode fibre. One of the important applications of MCF is power over fibre. In this paper, we have been designed eight different hexagonal structures by using 6, 7, 8, 9, 10, 11, 12 and 13 cores MCF. Those designs are categorized as even core multicore fibre (ECMCF) for 6, 8, 10 and 12 cores and odd core multicore fibre (OCMCF) for 7, 9, 11 and 13 number of cores. We also studied the impact analysis of odd or even number of the cores. The proposed designs having 140 µm diameter, large effective area of 1256 µ2m and two pitches d1=20 µm and d2=10 µm. The comparative analysis has been done by core multiplicity factor, electric field, coupled power, cross overpower parameter calculated for 10,000 samples. The hexagonal core shape MCF shows better performance if the number of the core in even number.

1981 ◽  
Vol 17 (5) ◽  
pp. 187 ◽  
Author(s):  
D.C. Tran ◽  
K.P. Koo

1986 ◽  
Vol 22 (21) ◽  
pp. 1110 ◽  
Author(s):  
D.N. Christodoulides ◽  
L.A. Reith ◽  
M.A. Saifi

1986 ◽  
Vol 22 (2) ◽  
pp. 87 ◽  
Author(s):  
D.M. Fye ◽  
R. Olshansky ◽  
J. Lacourse ◽  
W. Powazinik ◽  
R.B. Lauer

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4445
Author(s):  
Fintan McGuinness ◽  
Aidan Cloonan ◽  
Mohamed Oubaha ◽  
Dinesh Babu Duraibabu ◽  
M. Mahmood Ali ◽  
...  

The following presents a comparison of an extrinsic Fabry–Perot interferometer (EFPI)-based temperature sensor, constructed using a novel diaphragm manufacturing technique, with a reference all-glass EFPI temperature sensor. The novel diaphragm was manufactured using polyvinyl alcohol (PVA). The novel sensor fabrication involved fusing a single-mode fibre (SMF) to a length of fused quartz capillary, which has an inner diameter of 132 μm and a 220 μm outer diameter. The capillary was subsequently polished until the distal face of the capillary extended approximately 60 μm beyond that of the single mode fibre. Upon completion of polishing, the assembly is immersed in a solution of PVA. Controlled extraction resulted in creation of a thin diaphragm while simultaneously applying a protective coating to the fusion point of the SMF and capillary. The EFPI sensor is subsequently sealed in a second fluid-filled capillary, thereby creating a novel temperature sensor structure. Both temperature sensors were placed in a thermogravimetric analyser and heated from an indicated 30 °C to 100 °C to qualitatively compare sensitivities. Initial results indicated that the novel manufacturing technique both expedited production and produces a more sensitive sensor when compared to an all-glass construction.


1982 ◽  
Vol 18 (8) ◽  
pp. 328 ◽  
Author(s):  
M. Kawachi ◽  
M. Yasu ◽  
S. Tomaru ◽  
T. Edahiro ◽  
S. Sakaguchi

Sign in / Sign up

Export Citation Format

Share Document