scholarly journals Sap flow in response to rainfall pulses for two shrub species in the semiarid Chinese Loess Plateau

2016 ◽  
Vol 64 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Shengqi Jian ◽  
Zening Wu ◽  
Caihong Hu ◽  
Xueli Zhang

Abstract Rainfall pulses can significantly drive the evolution of the structure and function of semiarid ecosystems, and understanding the mechanisms that underlie the response of semiarid plants to rainfall is the key to understanding the responses of semi–arid ecosystems to global climatic change. We measured sap flow in the branches and stems of shrubs (Caragana korshinskii Kom. and Hippophae rhamnoides Linn.) using sap flow gauges, and studied the response of sap flow density to rainfall pulses using the “threshold–delay” model in the Chinese Loess Plateau. The results showed that the sap flow began about 1 h earlier, and increased twofold after rainfall, compared to its pre-rainfall value. The sap flow increased significantly with increasing rainfall classes, then gradually decreased. The response of sap flow was different among rainfall, species, position (branch and stem) during the pulse period, and the interactive effects also differed significantly (P < 0.0001). The response pattern followed the threshold–delay model, with lower rainfall thresholds of 5.2, 5.5 mm and 0.7, 0.8 mm of stem and branch for C. korshinskii and H. rhamnoides, demonstrating the importance of small rainfall events for plant growth and survival in semi–arid regions.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11226
Author(s):  
Congjian Sun ◽  
Huixin Hou ◽  
Wei Chen

Soil erosion is a critical environmental problem of the Chinese Loess Plateau (CLP). The effects of vegetation cover on soil erosion reduction under different rainfall types are not well understood especially in the eastern Chinese Loess Plateau (ECLP). In this study, we monitored runoff and sediment yield at the Fengjiagou water and soil conservation station with five types of vegetation cover (arbor trees (ARC), shrubs (SHC), arable (ABC), natural vegetation (NVC), and artificial grass (APC)) and three slope gradients (10°, 15°, and 20°) in the ECLP. Based on long-term monitoring data, five rainfall types were classified by the maximum 30 min rainfall intensity (I30). We also quantitatively revealed the interactive effects of different types precipitation, vegetation cover and slope gradients on regional soil erosion. The results showed that (1) The RII (13 times) and RIII (eight times) type are the most threatening erosive rainfall in this region. (2) The ARC and SHC type were most beneficial for soil and water conservation in the ECLP; The APC and ABC are not conductive to the prevention of regional soil erosion. (3) Runoff and sediment yields increased with the slope gradient. The farmland is vulnerable to soil erosion when the slope gradient exceeds 10°. The results of this study can improve the understanding of regional soil erosion processes on the ECLP and provide useful information for managing regional water and land resources.


2020 ◽  
Vol 45 (8) ◽  
pp. 1777-1788
Author(s):  
Lishan Ran ◽  
Xiankun Yang ◽  
Mingyang Tian ◽  
Hongyan Shi ◽  
Shaoda Liu ◽  
...  

2017 ◽  
Vol 9 (4) ◽  
pp. 609-621 ◽  
Author(s):  
Qingyun Li ◽  
Yanwei Sun ◽  
Wenlin Yuan ◽  
Subing Lyu ◽  
Fang Wan

2021 ◽  
Vol 125 ◽  
pp. 126-134
Author(s):  
Kaibo Wang ◽  
Lei Deng ◽  
Zhouping Shangguan ◽  
Yiping Chen ◽  
Xin Lin

2014 ◽  
Vol 11 (6) ◽  
pp. 10015-10043 ◽  
Author(s):  
H. Wang ◽  
W. Liu ◽  
C. L. Zhang

Abstract. Branched glycerol dialkyl glycerol tetraethers (bGDGTs) have been show promising for continental paleotemperature studies in loess-paleosol sequences (LPSs). Thus far, however, little is known about the effect of soil moisture on their distributions on the Chinese Loess Plateau (CLP). In this study, the relationships between environmental variables and the cyclization of bGDGTs (the so called CBT index) were investigated in a comprehensive set of surface soils in the CLP and its adjacent arid/semi-arid areas. We find that CBT correlates best with soil water content (SWC) or mean annual precipitation (MAP) for the total sample set. Particularly for the CLP soils, there is a significant positive relationship between CBT and MAP (CBT = −0.0021 · MAP + 1.7, n = 37, R2 = 0.87; MAP range: 210–680 mm). This indicates that CBT is mainly controlled by soil moisture in the alkalescent soils (pH > 7) in arid/semi-arid regions, where it is not sensitive to soil pH. Therefore, we suggest that CBT can potentially be used as a palaeorainfall proxy on the CLP. According to the preliminary CBT–MAP relationship for modern CLP soils, palaeorainfall history was reconstructed from three LPSs (Yuanbao, Lantian, and Mangshan) with published bGDGT data spanning the past 70 ka. The CBT-derived MAP records of the three sites consistently show precession-driven variations resembling the speleothem δ18O monsoon record, and are also in general accord with the fluctuations of the respective magnetic susceptibility (MS) record, supporting CBT as a reasonable proxy for palaeorainfall reconstruction in LPS studies. Moreover, the comparison of CBT-derived MAP and bGDGT-derived temperature may enable us to further assess the relative timing and magnitude of hydrological and thermal changes on the CLP, independent of chronology.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 785 ◽  
Author(s):  
Guohui Wang ◽  
Yuying Shen ◽  
Xianlong Yang ◽  
Zhixue Chen ◽  
Baoru Mo

The traditional heat balance method for measuring plant sap flow (SF) becomes troublesome and uneconomic for multibranched shrub species if all their stems are used for the measurement. The objectives of this study were to explore specific relationships between stem-scale SF and plant morphological traits and then to scale up SF measurements from the stem scale to the individual scale for Caragana korshinskii Kom., a dominant shrub species on the Chinese Loess Plateau. Sap flow was measured for twenty-one stems from three representative individuals from July to September 2018 during the rainy season. The results indicated that the stem-scale SF in C. korshinskii presented a positive linear correlation with the stem base diameter (SBD), stem length (SL), primary branch numbers in the stem (PBN), and estimated stem biomass (W). The SBD-based statistical models performed well in estimating the stem-scale SF, with an R2 value of 0.9726 and root mean squared error (RMSE) of 2.5389 g h−1. Over the canopy projection area, the individual-scale transpiration flows for the three selected C. korshinskii were 1.91, 1.10, and 1.59 mm·d−1. In addition, stem-scale SF was positively and linearly correlated with air temperature, photosynthetically active radiation, vapor pressure deficit, reference crop evapotranspiration, and variable transpiration. This study sheds light on morphological and meteorological influences on stem-scale SF and has made contributes to the accurate and rapid estimation of the plant sap flow from easily available morphological traits for multibranched shrub species in semiarid regions. Limitations, however, may exist for the established model when it is used to estimate SF of C. korshinskii during the water-limited dry season. Our study deserves further exploration of a more general model to have a better estimation of SF for C. korshinskii in both dry and rainy seasons.


2019 ◽  
Vol 33 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Kai Zheng ◽  
Jian-Sheng Ye ◽  
Bao-Cheng Jin ◽  
Fen Zhang ◽  
Jian-Zhou Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document