A method for the calculation of characteristics for the solution to stochastic differential equations

2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Alexander Egorov ◽  
Victor Malyutin

AbstractIn this work, a new numerical method to calculate the characteristics of the solution to stochastic differential equations is presented. This method is based on the Fokker–Planck equation for the transition probability function and the representation of the transition probability function by means of eigenfunctions of the Fokker–Planck operator. The results of the numerical experiments are presented.

2012 ◽  
Vol 4 (06) ◽  
pp. 848-863 ◽  
Author(s):  
Xue-Nian Cao ◽  
Jiang-Li Fu ◽  
Hu Huang

AbstractIn this paper, a new numerical algorithm for solving the time fractional Fokker-Planck equation is proposed. The analysis of local truncation error and the stability of this method are investigated. Theoretical analysis and numerical experiments show that the proposed method has higher order of accuracy for solving the time fractional Fokker-Planck equation.


2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2019 ◽  
Vol 40 (2) ◽  
pp. 1217-1240 ◽  
Author(s):  
Can Huang ◽  
Kim Ngan Le ◽  
Martin Stynes

Abstract First, a new convergence analysis is given for the semidiscrete (finite elements in space) numerical method that is used in Le et al. (2016, Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal.,54 1763–1784) to solve the time-fractional Fokker–Planck equation on a domain $\varOmega \times [0,T]$ with general forcing, i.e., where the forcing term is a function of both space and time. Stability and convergence are proved in a fractional norm that is stronger than the $L^2(\varOmega )$ norm used in the above paper. Furthermore, unlike the bounds proved in Le et al., the constant multipliers in our analysis do not blow up as the order of the fractional derivative $\alpha $ approaches the classical value of $1$. Secondly, for the semidiscrete (L1 scheme in time) method for the same Fokker–Planck problem, we present a new $L^2(\varOmega )$ convergence proof that avoids a flaw in the analysis of Le et al.’s paper for the semidiscrete (backward Euler scheme in time) method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shu-Li Mei ◽  
De-Hai Zhu

Metzler et al. introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field and a Boltzmann thermal heat bath. In this paper, we present an interval Shannon wavelet numerical method for the FFPE. In this method, a new concept named “dynamic interval wavelet” is proposed to solve the problem that the numerical solution of the fractional PDE is usually sensitive to boundary conditions. Comparing with the traditional wavelet defined in the interval, the Newton interpolator is employed instead of the Lagrange interpolation operator, so, the extrapolation points in the interval wavelet can be chosen dynamically to restrict the boundary effect without increase of the calculation amount. In order to avoid unlimited increasing of the extrapolation points, both the error tolerance and the condition number are taken as indicators for the dynamic choice of the extrapolation points. Then, combining with the finite difference technology, a new numerical method for the time fractional partial differential equation is constructed. A simple Fokker-Planck equation is taken as an example to illustrate the effectiveness by comparing with the Grunwald-Letnikov central difference approximation (GL-CDA).


Sign in / Sign up

Export Citation Format

Share Document