Numerical Method for The Time Fractional Fokker-Planck Equation

2012 ◽  
Vol 4 (06) ◽  
pp. 848-863 ◽  
Author(s):  
Xue-Nian Cao ◽  
Jiang-Li Fu ◽  
Hu Huang

AbstractIn this paper, a new numerical algorithm for solving the time fractional Fokker-Planck equation is proposed. The analysis of local truncation error and the stability of this method are investigated. Theoretical analysis and numerical experiments show that the proposed method has higher order of accuracy for solving the time fractional Fokker-Planck equation.

2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Alexander Egorov ◽  
Victor Malyutin

AbstractIn this work, a new numerical method to calculate the characteristics of the solution to stochastic differential equations is presented. This method is based on the Fokker–Planck equation for the transition probability function and the representation of the transition probability function by means of eigenfunctions of the Fokker–Planck operator. The results of the numerical experiments are presented.


2021 ◽  
Vol 26 (3) ◽  
pp. 59
Author(s):  
Musa Ahmed Demba ◽  
Higinio Ramos ◽  
Poom Kumam ◽  
Wiboonsak Watthayu

An optimized embedded 5(3) pair of explicit Runge–Kutta–Nyström methods with four stages using phase-fitted and amplification-fitted techniques is developed in this paper. The new adapted pair can exactly integrate (except round-off errors) the common test: y″=−w2y. The local truncation error of the new method is derived, and we show that the order of convergence is maintained. The stability analysis is addressed, and we demonstrate that the developed method is absolutely stable, and thus appropriate for solving stiff problems. The numerical experiments show a better performance of the new embedded pair in comparison with other existing RKN pairs of similar characteristics.


2019 ◽  
Vol 40 (2) ◽  
pp. 1217-1240 ◽  
Author(s):  
Can Huang ◽  
Kim Ngan Le ◽  
Martin Stynes

Abstract First, a new convergence analysis is given for the semidiscrete (finite elements in space) numerical method that is used in Le et al. (2016, Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal.,54 1763–1784) to solve the time-fractional Fokker–Planck equation on a domain $\varOmega \times [0,T]$ with general forcing, i.e., where the forcing term is a function of both space and time. Stability and convergence are proved in a fractional norm that is stronger than the $L^2(\varOmega )$ norm used in the above paper. Furthermore, unlike the bounds proved in Le et al., the constant multipliers in our analysis do not blow up as the order of the fractional derivative $\alpha $ approaches the classical value of $1$. Secondly, for the semidiscrete (L1 scheme in time) method for the same Fokker–Planck problem, we present a new $L^2(\varOmega )$ convergence proof that avoids a flaw in the analysis of Le et al.’s paper for the semidiscrete (backward Euler scheme in time) method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Shu-Li Mei ◽  
De-Hai Zhu

Metzler et al. introduced a fractional Fokker-Planck equation (FFPE) describing a subdiffusive behavior of a particle under the combined influence of external nonlinear force field and a Boltzmann thermal heat bath. In this paper, we present an interval Shannon wavelet numerical method for the FFPE. In this method, a new concept named “dynamic interval wavelet” is proposed to solve the problem that the numerical solution of the fractional PDE is usually sensitive to boundary conditions. Comparing with the traditional wavelet defined in the interval, the Newton interpolator is employed instead of the Lagrange interpolation operator, so, the extrapolation points in the interval wavelet can be chosen dynamically to restrict the boundary effect without increase of the calculation amount. In order to avoid unlimited increasing of the extrapolation points, both the error tolerance and the condition number are taken as indicators for the dynamic choice of the extrapolation points. Then, combining with the finite difference technology, a new numerical method for the time fractional partial differential equation is constructed. A simple Fokker-Planck equation is taken as an example to illustrate the effectiveness by comparing with the Grunwald-Letnikov central difference approximation (GL-CDA).


1982 ◽  
Vol 1 (4) ◽  
pp. 507-513
Author(s):  
Yang Ying-nul ◽  
Wu Xi-zhen ◽  
Peng Qing-quan

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1260
Author(s):  
Elsayed I. Mahmoud ◽  
Viktor N. Orlov

This paper presents a practical numerical method, an implicit finite-difference scheme for solving a two-dimensional time-space fractional Fokker–Planck equation with space–time depending on variable coefficients and source term, which represents a model of a Brownian particle in a periodic potential. The Caputo derivative and the Riemann–Liouville derivative are considered in the temporal and spatial directions, respectively. The Riemann–Liouville derivative is approximated by the standard Grünwald approximation and the shifted Grünwald approximation. The stability and convergence of the numerical scheme are discussed. Finally, we provide a numerical example to test the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document