scholarly journals Spectral stability of nonlinear gravity waves in the atmosphere

2019 ◽  
Vol 5 (1) ◽  
pp. 12-33 ◽  
Author(s):  
Mark Schlutow ◽  
Erik Wahlén ◽  
Philipp Birken

AbstractWe apply spectral stability theory to investigate nonlinear gravity waves in the atmosphere. These waves are determined by modulation equations that result from Wentzel-Kramers-Brillouin theory. First, we establish that plane waves, which represent exact solutions to the inviscid Boussinesq equations, are spectrally stable with respect to their nonlinear modulation equations under the same conditions as what is known as modulational stability from weakly nonlinear theory. In contrast to Boussinesq, the pseudo-incompressible regime does fully account for the altitudinal varying background density. Second,we show for the first time that upward-traveling non-plane wave fronts solving the inviscid nonlinear modulation equations, that compare to pseudo-incompressible theory, are unconditionally unstable. Both inviscid regimes turn out to be ill-posed as the spectra allow for arbitrarily large instability growth rates. Third, a regularization is found by including dissipative effects. The corresponding nonlinear traveling wave solutions have localized amplitude. As a consequence of the nonlinearity, envelope and linear group velocity, as given by the derivative of the frequency with respect to wavenumber, do not coincide anymore. These waves blow up unconditionally by embedded eigenvalue instabilities but the instability growth rate is bounded from above and can be computed analytically. Additionally, all three types of nonlinear modulation equations are solved numerically to further investigate and illustrate the nature of the analytic stability results.

2020 ◽  
Vol 6 (1) ◽  
pp. 97-112
Author(s):  
Mark Schlutow ◽  
Erik Wahlén

Abstract This study investigates strongly nonlinear gravity waves in the compressible atmosphere from the Earth’s surface to the deep atmosphere. These waves are effectively described by Grimshaw’s dissipative modulation equations which provide the basis for finding stationary solutions such as mountain lee waves and testing their stability in an analytic fashion. Assuming energetically consistent boundary and far-field conditions, that is no energy flux through the surface, free-slip boundary, and finite total energy, general wave solutions are derived and illustrated in terms of realistic background fields. These assumptions also imply that the wave-Reynolds number must become less than unity above a certain height. The modulational stability of admissible, both non-hydrostatic and hydrostatic, waves is examined. It turns out that, when accounting for the self-induced mean flow, the wave-Froude number has a resonance condition. If it becomes 1/ 1 / 2 1/\sqrt 2 , then the wave destabilizes due to perturbations from the essential spectrum of the linearized modulation equations. However, if the horizontal wavelength is large enough, waves overturn before they can reach the modulational stability condition.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 205
Author(s):  
Dan Lucas ◽  
Marc Perlin ◽  
Dian-Yong Liu ◽  
Shane Walsh ◽  
Rossen Ivanov ◽  
...  

In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.


1987 ◽  
Vol 184 ◽  
pp. 267-288 ◽  
Author(s):  
Douglas G. Dommermuth ◽  
Dick K. P. Yue

We develop a robust numerical method for modelling nonlinear gravity waves which is based on the Zakharov equation/mode-coupling idea but is generalized to include interactions up to an arbitrary order M in wave steepness. A large number (N = O(1000)) of free wave modes are typically used whose amplitude evolutions are determined through a pseudospectral treatment of the nonlinear free-surface conditions. The computational effort is directly proportional to N and M, and the convergence with N and M is exponentially fast for waves up to approximately 80% of Stokes limiting steepness (ka ∼ 0.35). The efficiency and accuracy of the method is demonstrated by comparisons to fully nonlinear semi-Lagrangian computations (Vinje & Brevig 1981); calculations of long-time evolution of wavetrains using the modified (fourth-order) Zakharov equations (Stiassnie & Shemer 1987); and experimental measurements of a travelling wave packet (Su 1982). As a final example of the usefulness of the method, we consider the nonlinear interactions between two colliding wave envelopes of different carrier frequencies.


2021 ◽  
pp. 1-23
Author(s):  
FÁBIO NATALI ◽  
SABRINA AMARAL

Abstract The purpose of this paper is to present an extension of the results in [8]. We establish a more general proof for the moving kernel formula to prove the spectral stability of periodic traveling wave solutions for the regularized Benjamin–Bona–Mahony type equations. As applications of our analysis, we show the spectral instability for the quintic Benjamin–Bona–Mahony equation and the spectral (orbital) stability for the regularized Benjamin–Ono equation.


1994 ◽  
Vol 262 ◽  
pp. 265-291 ◽  
Author(s):  
Mansour Ioualalen ◽  
Christian Kharif

A numerical procedure has been developed to study the linear stability of nonlinear three-dimensional progressive gravity waves on deep water. The three-dimensional patterns considered herein are short-crested waves which may be produced by two progressive plane waves propagating at an oblique angle, γ, to each other. It is shown that for moderate wave steepness the dominant resonances are sideband-type instabilities in the direction of propagation and, depending on the value of γ, also in the transverse direction. It is also shown that three-dimensional progressive gravity waves are less unstable than two-dimensional progressive gravity waves.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Shaoyong Li ◽  
Zhengrong Liu

We investigate the traveling wave solutions and their bifurcations for the BBM-likeB(m,n)equationsut+αux+β(um)x−γ(un)xxt=0by using bifurcation method and numerical simulation approach of dynamical systems. Firstly, for BBM-likeB(3,2)equation, we obtain some precise expressions of traveling wave solutions, which include periodic blow-up and periodic wave solution, peakon and periodic peakon wave solution, and solitary wave and blow-up solution. Furthermore, we reveal the relationships among these solutions theoretically. Secondly, for BBM-likeB(4,2)equation, we construct two periodic wave solutions and two blow-up solutions. In order to confirm the correctness of these solutions, we also check them by software Mathematica.


Sign in / Sign up

Export Citation Format

Share Document