scholarly journals New insights into the oxidation of phenoxatellurine with sulfuric acid

2019 ◽  
Vol 42 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Farzin Mostaghimi ◽  
Jens Bolsinger ◽  
Enno Lork ◽  
Jens Beckmann

Abstract The oxidation of phenoxatellurine (PT) with conc. H2SO4 was reinvestigated. Two crystalline products, namely [PT2][H3O](SO4H)3 (1) and [PT](SO4) (2) were isolated and fully characterized by X-ray crystallography. The structure of 1 features [PT2]2+ dications giving rise to double-decker structures with two parallel PT layers that arise from dimerisation of two radical cations [PT]˙+. The [PT2]2+ dications and the hydrogensulfate ions are associated via secondary Te···O interations. The oxonium ion and the hydrogensulfate ions are involved in hydrogen bonding. The structure of 2 comprises ion pairs consisting of [PT]2+ dications and sulfate ions, which form a 2D coordination polymer. In addition, adjacent sulfate ions in the crystal lattice bind to tellurium atoms via secondary secondary Te···O interations.

2000 ◽  
Vol 55 (12) ◽  
pp. 1124-1130 ◽  
Author(s):  
Jochen Büchler ◽  
Cacilia Maichle-Mössmer ◽  
Karl-Artur Kovar

A synthetic route to the production of the pure enantiomers of the ecstasy-analogue N-Ethyl- 3,4-methylenedioxyamphetamine (MDE) and its major metabolites MDA and HME is presented. The crystal and molecular structure of these compounds has been determined by X-ray crystallography. The hydrogen bonding in the crystal lattice is examined and significant differences were found by comparing (R)- and (S)-MDA-HCl.


2013 ◽  
Vol 68 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Muhammad Monim-ul-Mehbooba ◽  
Muhammad Ramzan ◽  
Tobias Rüffe ◽  
Heinrich Lang ◽  
Shafqat Naddem ◽  
...  

A cyanido-bridged Zn(II)-Ag(I) bimetallic coordination polymer, {[Zn(phen)2(H2O){Ag(CN)2}] [Ag(CN)2]·MeOH}n (1), was prepared using ZnCl2, 1,10-phenanthroline (phen) and K[Ag(CN)2] and characterized by IR spectroscopy, thermal analysis and X-ray crystallography. The crystal structure of 1 consists of dinuclear [Zn(phen)2(H2O){Ag(CN)2}]+ cations, [Ag(CN)2]- anions and a methanol molecule. The non-coordinated [Ag(CN)2]- anions are linked to the [Zn(phen)2(H2O){Ag(CN)2}]+ complex cations through argentophilic interactions leading to the formation of chains. The chains are connected by hydrogen bonds and π-π interactions to give a 3D network.


2008 ◽  
Vol 63 (12) ◽  
pp. 1443-1446 ◽  
Author(s):  
Mohammad Sahabul Alam ◽  
Andreas Scheurer ◽  
Rolf W. Saalfrank ◽  
Paul Müller

C2-symmetric nickel(II) salen complexes [NiL] 1 were deposited on a highly oriented pyrolytic graphite (HOPG) surface from their acetone solutions. They aggregate easily to single, segregated, homochiral polymeric chains of (M)-1D- 1n [NiL] (2) on the substrate as also found in single crystals. In STM topography, the single helical 1D structures 2 found on the surface were in excellent agreement with the dimension of aligned dimeric aggregates of 1 obtained from X-ray crystallography. Weak intermolecular NiII...OMe coordinations (dMeO−Ni = 0.35 nm) were found to be responsible for the formation of the chiral, helical and 1D assemblies on the substrate.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 129-133 ◽  
Author(s):  
De-Gui Shu ◽  
Wen-Yu Chen

Abstract Here, a new indium (In)-based coordination polymer [In(hip)](DMF)2(H2O)3 (1, DMF=N,N-dimethylformamide) was successfully prepared by a solvothermal reaction of In(NO3)3·6H2O and 5-hydroxyisophthalic acid (H3hip) in a mixed solvent of DMF and H2O with the presence of NaCl as a template. Complex 1 was characterized by elemental analysis (EA), single-crystal X-ray crystallography, and powder X-ray diffraction (PXRD), and the results reveal that complex 1 shows a two-dimensional (2D) grid-like network with considerable solvent accessible volume that was generated from the packing of the 2D layers via the AB pattern. Furthermore, complex 1 could be downsized into nanoscale particles with the aid of polyvinylpyrrolidone (PVP). In addition, the anticancer activities of 1 and the nanoscale 1 were probed via the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay.


2012 ◽  
Vol 11 (4) ◽  
pp. 259-265
Author(s):  
Leticia Guerrero ◽  
Ruben Montalvo ◽  
Ignacio A. Rivero ◽  
Victor Barba

2009 ◽  
Vol 64 (11-12) ◽  
pp. 1542-s1554 ◽  
Author(s):  
Maria Georgiou ◽  
Simone Wöckel ◽  
Vera Konstanzer ◽  
Sebastian Dechert ◽  
Michael John ◽  
...  

A set of pyrazole-bridged bis(imidazolium) compounds [H3L1]X2 - [H3 L4]X2 (L1 = 3,5-bis[1-(tert-butyl)imidazolium-1-ylmethyl]-1H-pyrazole; L2 = 3,5-bis[1-(tert-butyl)imidazolium- 1-ylmethyl]-4-phenyl-1H-pyrazole; L3 = 3,5-bis[1-(1-adamantyl)imidazolium-1-ylmethyl]-1Hpyrazole; L4 = 3,5-bis[1-(1-adamantyl)imidazolium-1-ylmethyl]-4-phenyl-1H-pyrazole; X = Cl−, BF4 − or PF6 −) has been prepared, and three compounds have been characterized by X-ray crystallography. The unique [H3L4][H2L4](PF6)3 features a dimeric face-to-face arrangement of two molecules due to the involvement of both the pyrazole-NH and the imidazolium C2H in hydrogen bonding. [H3L1]X2 - [H3L4]X2 serve as precursors for silver(I) complexes with compartmental pyrazolate-bridged bis(NHC) ligands. The complexes have been readily prepared by the Ag2O route and feature either the known [(L1−4)2Ag4]2+ or the new [(H2L1)4Ag4]8+ motif, depending on the solvent for the reaction (MeCN or acetone). [(H2L1)4Ag4](PF6)8 contains a central (pzAg)4 ring with pendant imidazolium side arms. Upon further reaction with Ag2O in MeCN it was found to undergo transformation to the corresponding [(L1)2Ag4](PF6)2. All complexes have been thoroughly studied by NMR spectroscopy in solution, and preliminary luminescence data of [(H2L1)4Ag4](PF6)8 have been recorded


2004 ◽  
Vol 82 (2) ◽  
pp. 386-398 ◽  
Author(s):  
Dominic Laliberté ◽  
Thierry Maris ◽  
James D Wuest

Tetraphenylmethane, tetraphenylsilane, and simple derivatives with substituents that do not engage in hydrogen bonding typically crystallize as close-packed structures with essentially no space available for the inclusion of guests. In contrast, derivatives with hydrogen-bonding groups are known to favor the formation of open networks that include significant amounts of guests. To explore this phenomenon, we synthesized six new derivatives 5a–5e and 6a of tetraphenylmethane and tetraphenylsilane with urethane and urea groups at the para positions, crystallized the compounds, and determined their structures by X-ray crystallography. As expected, all six compounds crystallize to form porous three-dimensional hydrogen-bonded networks. In the case of tetraurea 5e, 66% of the volume of the crystals is accessible to guests, and guests can be exchanged in single crystals without loss of crystallinity. Of special note are: (i) the use of tetrakis(4-isocyanatophenyl)methane (1f) as a precursor for making enantiomerically pure tetraurethanes and tetraureas, including compounds 5b, 5c; and (ii) their subsequent crystallization to give porous chiral hydrogen-bonded networks. Such materials promise to include chiral guests enantioselectively and to be useful in the separation of racemates, asymmetric catalysis, and other applications.Key words: crystal engineering, molecular tectonics, hydrogen bonding, networks, porosity, urethanes, ureas, tetraphenylmethane, tetraphenylsilane.


Sign in / Sign up

Export Citation Format

Share Document