scholarly journals Seismic Design Of Low-Rise Office Buildings According To Romanian Seismic Codes. Case Study.

2015 ◽  
Vol 11 (2) ◽  
pp. 10-18
Author(s):  
Ana-Maria Ghiţă

Abstract The paper presents a study case and highlights the changes made by the new, in force, seismic Code P100-1/2013 in comparison with the former P100-1/2006, concerning the reinforced concrete frame structural systems design. Different seismic designed RC frames systems, compatible with modern office requirements, were studied. The influence of the earthquake codes provisions on design of regular buildings, having openings fitted for open spaces, with a story height of 3.50m, was assessed. The benefits of tubular structures, with rigid frames made of closely spaced columns on the building perimeter, were analyzed as well. The results of the study case are presented emphasizing the consequences of the application of the new seismic Code on the computation of the reinforced concrete frame structures.

2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


Sign in / Sign up

Export Citation Format

Share Document