scholarly journals Computer Aided Assembly Sequence Generation

2015 ◽  
Vol 6 (3) ◽  
pp. 83-87 ◽  
Author(s):  
Marcin Suszyński ◽  
Jan Żurek

Abstract The purpose of the paper is to explore the problem of modeling technological assembly process, particularly generating assembly sequence for parts and machinery sets. A new computer program Msassembly is introduced. The program was invented by the authors on the basis of an algorithm for determining assembly sequence for parts and machinery sets. The algorithm is based on hypergraphs and directed graphs, as well as on assessment of transitions between assembly states. The principles of operation of Msassembly are presented on the example of modelling the assembly sequence of a ball joint. At the end of the paper, research findings are submitted.

2020 ◽  
Vol 14 (1) ◽  
pp. 6-17
Author(s):  
Atsuko Enomoto ◽  
Noriaki Yamamoto ◽  
Yoshio Yamamura ◽  
Yoshio Sugawara ◽  
◽  
...  

Completely automated assembly sequence planning for control panels is proposed. The proposed algorithm generates the manufacturing bill of material for the assembly processes and total assembly sequence. The algorithm integrates the knowledge of assembly process into a near optimum assembly sequence generation.


Author(s):  
Haixia Wang ◽  
Dariusz Ceglarek

A new methodology is presented to generate all of the assembly sequences for a production system configured as a N-station assembly line with kn (n  = 1, 2,…, N) parts or subassemblies to be assembled at stations 1, 2,…, N, respectively. This expands current approaches in sequence generation applicable for binary assembly process to a k-ary assembly process by including: (i) nonbinary state between two parts, i.e., multiple joints between two parts or subassemblies, is taken into consideration, and (ii) simultaneous assembly of Y (Y≥3) parts or subassemblies. The methodology is based upon proposed k-piece graph and k-piece mixed graph approaches for the assemblies without and with assembly precedence relationship, respectively. Compared with the currently used liaisons graph (or datum flow chain) representation which shows part-to-part assembly relations, the k-piece graph (or k-piece mixed graph) shows all of the feasible subassemblies and their constituent parts and joints (pairs of mating features). Based upon the k-piece graph or k-piece mixed-graph approach, all of the feasible subassemblies for a predetermined assembly line configuration are identified, and all of the sequences for a k-ary assembly process are generated. Case studies are presented to illustrate the advantages of the presented methodology over the state-of-the-art research in assembly sequence generation.


Author(s):  
MVA Raju Bahubalendruni ◽  
Bibhuti Bhusan Biswal

Selection of optimized assembly sequence is significantly essential to achieve cost-effective manufacturing process. This paper presents a novel efficient methodology to generate cost-effective feasible robotic assembly sequences though concatenation of parts. Part concatenation process will be followed with liaison predicate test and feasibility predicate test. A unique method called bounding box method is described to test the feasibility predicate efficiently in the computer-aided design environment. Assembly indexing technique is proposed to filter the redundant assembly subsets with high energy in order to minimize the computational time. The cost of collision free assembling operation is considered by the weight and distance traveled by the part in the assembly environment to join with the mating part. The method is successful in finding feasible optimal assembly sequence without ignoring any possible assembly sequence and found to be efficient in solving computer-aided assembly sequence generation. The correctness of the methodology is illustrated with an example.


Author(s):  
Ulises Zaldivar-Colado ◽  
Samir Garbaya

In this paper, we present the virtual environment of assembly sequence generation of a product at the design stage. The interaction technique developed for the manipulation of virtual parts includes visual and haptic feedback limited to force sensation in the fingertips and weight and inertia parts sensation. At this stage of development, the parts and subassemblies have kinematics behaviour in the virtual scene. We present some guidelines for modeling a generic virtual environment for performing assembly tasks. Virtual parts modeling and connections modeling is based on characteristics of real parts and connections. The mating phase of assembly is based on the Snap-Fitting technique, which is improved by the addition of vectors in the symmetry axis of virtual parts. An XML modeling allows the environment to be generic and supporting different products.


Sign in / Sign up

Export Citation Format

Share Document