Fatigue Life and Stress Analysis of the Crankshaft of a Single Cylinder Diesel Engine under Variable Forces and Speeds

2021 ◽  
Vol 63 (8) ◽  
pp. 770-777
Author(s):  
Mehmet Bulut ◽  
Ömer Cihan ◽  
İlker Temizer

Abstract In this paper, a single cylinder crankshaft manufactured with C45 steel was used to investigate variation in stress, deformation, and fatigue life and safety factor at critical locations of the crankshaft. For this purpose, numerical analyses using ANSYS/Workbench software were performed under different operating conditions. Additionally, low cycle fatigue analyses were conducted experimentally for the validation of the numerical results in terms of the failure characteristics of the crankshaft. It was concluded that chamfers at sharp corners of the crankshaft on the flywheel side showed critical regions, indicating that the experimental and numerical results were consistent. These results suggested that critical regions of the crankshaft could be optimized for the improvement of sustainability in long life service.

Author(s):  
J. Hou ◽  
J. Dubke ◽  
K. Barlow ◽  
S. Slater ◽  
L. Harris ◽  
...  

Following a reanalysis of the original material data plus supplementary Low Cycle Fatigue (LCF) specimen testing, an Original Equipment Manufacturer (OEM) reduced the low cycle fatigue life limits for a number of turbine components. To ascertain the validity of the new life limits, an international collaborative spin rig test program was initiated to provide more accurate low cycle fatigue life limits. The program covered a broad range of activities including, Finite Element (FE) stress analyses, cyclic spin rig testing, fractographic assessment and fatigue crack growth (FCG) analyses. This paper describes the 2D and 3D crack growth analyses of critical turbine components in a turboprop gas turbine engine, comparison of predicted results obtained using different software and also correlations with spin test results from the program. First, FE stress analyses of selected turbine components were carried out under both engine operating conditions and spin-rig test configurations in order to determine the maximum and minimum operating speeds required to match the stress ranges at the critical location specified by the OEM under engine operating conditions. Second, 2D and 3D crack growth analyses were performed independently by three organisations for a disk bolthole using the state-of-the-art software. Third, the predictions from different software were compared, and the relative technical merits of each software were evaluated. Finally, the predicted results were correlated against the striation counts determined by the OEM from the results of spin rig tests.


Author(s):  
Carmelo Maggi ◽  
Leonardo Tognarelli ◽  
Alessio Capanni ◽  
Jan Wojnar

Hyper-compressors are subjected to very high operating pressure, maximum and fluctuating, strongly impacting design and life of all cylinder components. Components subjected to fatigue (both high cycle fatigue and low cycle fatigue) can experience a failure in a very short time that may cause large production losses. Packing cups proved to be one of the most critical cylinder components and the fatigue behavior of the packing cups subjected to alternating loads, due to the suction and discharge conditions, is their key design factor. A thorough study has been performed in order to increase the safety factors in all critical regions of the packing cups analyzing a new manufacturing cycle that allows optimizing the compressive pre-stresses on the lube oil parts due to the autofrettage procedure. The approach included a dedicated sensitivity FEM analysis of the autofrettage pressure to determine the correct residual stresses at the lube oil parts in order to keep them under compressive stress in operating conditions and Fracture Mechanics Calculations based on BSI7910 aimed at achieving a design able to survive with a threshold defect larger than the minimum detectable defect.


2013 ◽  
Vol 423-426 ◽  
pp. 2116-2122
Author(s):  
Fu Hai Cai ◽  
Xin Wang ◽  
Fu Ling Zhao

Operating characteristics of small and medium tonnage lattice boom crane which withstand fatigue loads was analyzed in this paper. It showed that the lattice boom crane utilization level is in the overlap zone of low cycle fatigue and high cycle fatigue. There may be some plastic deformation in the structure. So the total damage calculated by the Palmgren-Miner rule had a large scatter. Typical operating conditions was analyzed that K-type welded joints of the boom is under axial load and in-plane bending loads. Several critical areas of K-type welded joints were determined by ANSYS finite element calculation software where the stress amplitude was larger on the single side of the lattice boom. A new stress spectrum acquisition method based on the “measured+statistics+compare+simulation” integrated strategy of crane K-type welded joints was proposed. Based on a simplified Huffman non-linear cumulative damage theory, fatigue life of crane K-type welded Joints were calculated based on the strain parameters. They were compared with Palmgren-Miner rule and together with fracture mechanics method. Results showed that although they were all conservative compared with test results, the new method can be applied easily in for engineering applications because it only need amplitude constant amplitude fatigue strain-life data.


2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


Sign in / Sign up

Export Citation Format

Share Document