scholarly journals Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna

Nanophotonics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 1299-1306 ◽  
Author(s):  
Frédéric Peyskens ◽  
Pieter Wuytens ◽  
Ali Raza ◽  
Pol Van Dorpe ◽  
Roel Baets

AbstractThe integration of plasmonic antennas on single-mode silicon nitride waveguides offers great perspective for integrated surface-enhanced Raman spectroscopy (SERS). However, the few reported experimental demonstrations still require multiple plasmonic antennas to obtain a detectable SERS spectrum. Here, we show, for the first time, SERS signal detection by a single nanoplasmonic antenna integrated on a single-mode SiN waveguide. For this purpose, we investigated a backscattering detection scheme in combination with background noise reduction, which allowed an optimization of the signal-to-noise ratio (SNR) of this platform. Furthermore, a comparison with the free-space SERS spectrum of the same antenna shows that the conversion efficiency from pump power to total radiated Stokes power is twice as efficient in the case of waveguide excitation. As such, we explored several important aspects in the optimization of on-chip SERS sensors and experimentally demonstrated the power of exciting nanoplasmonic antennas using the evanescent field of a waveguide. This observation not only is useful for Raman sensing but also could be beneficial for any process involving plasmonic enhancement.

1994 ◽  
Vol 48 (10) ◽  
pp. 1193-1195 ◽  
Author(s):  
E. Roth ◽  
W. Kiefer

The use of surface-enhanced Raman scattering (SERS) as a detection method in gas chromatography (GC) was investigated by two different approaches; GC eluates were trapped either in liquid silver sol or on solid thin-layer chromatography (TLC) plates, previously coated with silver colloidal solution. Subsequently, the trapped analytes were monitored by their SERS spectrum. Pyridine was successfully used as probe molecule for both interfaces. The extension of this static system for application in on-line detection of GC eluates is discussed.


2008 ◽  
Author(s):  
Jorg Hubner ◽  
Thomas Anhøj ◽  
Sarah Pedersen ◽  
Dan A. Zauner ◽  
Anders M. Jorgensen ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2508
Author(s):  
Osama Nasr ◽  
Jian-Ru Jiang ◽  
Wen-Shuo Chuang ◽  
Sheng-Wei Lee ◽  
Chih-Yen Chen

In this article, we demonstrate a facile, rapid, and practical approach to growing high-quality Cu2S nanosheets decorated with Ag nanoparticles (NPs) through the galvanic reduction method. The Ag/Cu2S nanosheets were efficiently applied to the surface-enhanced Raman scattering (SERS) and photocatalytic degradation applications. The photodegradation of RhB dye with the Ag/Cu2S nanosheets composites occurred at a rate of 2.9 times faster than that observed with the undecorated Cu2S nanosheets. Furthermore, the Ag/Cu2S nanosheets displayed highly sensitive SERS detection of organic pollutant (R6G) as low as 10−9 M. The reproducibility experiments indicated that the Ag/Cu2S nanosheets composites could be used for dual functionality in a new generation of outstandingly sensitive SERS probes for detection and stable photocatalysts.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yasmin Roye ◽  
Uche Udeochu ◽  
Maraizu Ukaegbu ◽  
Jonathan Onuegbu

Spectroelectrochemical techniques were used to probe the interaction of adenine with pyridoxine at pH 7.0. Analysis of UV-visible absorption of the adenine-pyridoxine complex at 260 nm using the Lineweaver–Burk double reciprocal plot produced a linear graph indicating a 1 : 1 mode of interaction between the compounds and a binding constant of 29.1. Change in the background current and broadening of adenine and pyridoxine cyclic voltammetry (CV) oxidation peaks at 1.0 V and 0.8 V, respectively, compared to the CV of the individual compounds is indicative of an interaction. The Raman shift of the coupled –C(11)H2-OH bending and in-plane N(7)-H mode at 1235 cm−1 to 1215 cm−1 of pyridoxine and the shift to the lower wavenumber of the adenine –N(10)H2 rocking band from 942 to 906 cm−1 confirm that the adenine exocyclic amino group and its purine nitrogen atom N(7) interacts with pyridoxine O(12) via the formation of hydrogen bonds. Strong enhancement of surface-enhanced Raman spectroscopy (SERS) bands pertaining to adenine and the bathochromic shift of the normal Raman band due to the adenine ring breathing mode observed at 722 cm−1 in the spectrum of adenine, to 732 cm−1 in the SERS spectrum of aqueous adenine-pyridoxine indicates that the complex adsorbs onto the Ag nanoparticle surface with the adenine portion possessing a perpendicular orientation.


2015 ◽  
Vol 51 (33) ◽  
pp. 7152-7155 ◽  
Author(s):  
O. O. Alabi ◽  
A. N. F. Edilbi ◽  
C. Brolly ◽  
D. Muirhead ◽  
J. Parnell ◽  
...  

Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mustafa Culha ◽  
Brian Cullum ◽  
Nickolay Lavrik ◽  
Charles K. Klutse

While surface-enhanced Raman spectroscopy (SERS) has been attracting a continuously increasing interest of scientific community since its discovery, it has enjoyed a particularly rapid growth in the last decade. Most notable recent advances in SERS include novel technological approaches to SERS substrates and innovative applications of SERS in medicine and molecular biology. While a number of excellent reviews devoted to SERS appeared in the literature over the last two decades, we will focus this paper more specifically on several promising trends that have been highlighted less frequently. In particular, we will briefly overview strategies in designing and fabricating SERS substrates using deterministic patterning and then cover most recent biological applications of SERS.


Sign in / Sign up

Export Citation Format

Share Document