scholarly journals Unmixing octopus camouflage by multispectral mapping of Octopus bimaculoides’ chromatic elements

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giulia Guidetti ◽  
Guy Levy ◽  
Giusy Matzeu ◽  
Joshua M. Finkelstein ◽  
Michael Levin ◽  
...  

Abstract Cephalopods camouflage abilities arise from highly specialized chromatic elements in their skin, chromatophores, iridophores, and leucophores, that enable them to display complex and rapidly changing color patterns. Despite the extensive study of these chromatic elements in squid and cuttlefish, full characterization of their individual optical response is still elusive in the Octopus species. We present here detailed multispectral analysis and mapping of the Octopus bimaculoides skin that allows to precisely identify the spatial distribution of the animal’s pigmented and structural elements. The mutual interaction of chromatophores and iridophores is also characterized both in terms of spectral response and spatial localization. The spectral information obtained through this analysis helps to understand the complexity and behavior of these natural tissues while continuing to serve as an inspiration for the fabrication of advanced, chromatically adaptable materials.

2018 ◽  
Vol 8 (7) ◽  
pp. 1129 ◽  
Author(s):  
Timothy Scarborough ◽  
Timothy Gorman ◽  
François Mauger ◽  
Péter Sándor ◽  
Sanjay Khatri ◽  
...  

High-harmonic generation was used to probe the spectral intensity and phase of the recombination-dipole matrix element of methyl chloride (CH3Cl), revealing a Cooper minimum (CM) analogous to the 3p CM previously reported in argon. The CM structure altered the spectral response and group delay (GD) of the emitted harmonics, and was revealed only through careful removal of all additional contributors to the GD. In characterizing the GD dispersion, also known as the “attochirp” we additionally present the most complete validation to date of the commonly used strong-field approximation for calculating the GD, demonstrating the correct intensity scaling and extending its usefulness to simple molecules.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Chunming Tang ◽  
Yan Qiu ◽  
Qunying Liao ◽  
Zhengchun Zhou

2021 ◽  
Vol 7 (6) ◽  
pp. 89
Author(s):  
Valerio De Santis

Recent advances in computational electromagnetics (CEMs) have made the full characterization of complex magnetic materials possible, such as superconducting materials, composite or nanomaterials, rare-earth free permanent magnets, etc [...]


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Pauline Boucher ◽  
Arthur Goetschy ◽  
Giacomo Sorelli ◽  
Mattia Walschaers ◽  
Nicolas Treps

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2020 ◽  
Vol 4 (7) ◽  
Author(s):  
Travis D. Frazer ◽  
Joshua L. Knobloch ◽  
Jorge N. Hernández-Charpak ◽  
Kathleen M. Hoogeboom-Pot ◽  
Damiano Nardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document